EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Weighted Polynomial Approximation and Numerical Methods for Integral Equations

Download or read book Weighted Polynomial Approximation and Numerical Methods for Integral Equations written by Peter Junghanns and published by Springer Nature. This book was released on 2021-08-10 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a combination of two topics: one coming from the theory of approximation of functions and integrals by interpolation and quadrature, respectively, and the other from the numerical analysis of operator equations, in particular, of integral and related equations. The text focusses on interpolation and quadrature processes for functions defined on bounded and unbounded intervals and having certain singularities at the endpoints of the interval, as well as on numerical methods for Fredholm integral equations of first and second kind with smooth and weakly singular kernel functions, linear and nonlinear Cauchy singular integral equations, and hypersingular integral equations. The book includes both classic and very recent results and will appeal to graduate students and researchers who want to learn about the approximation of functions and the numerical solution of operator equations, in particular integral equations.

Book Numerical Solution of Integral Equations

Download or read book Numerical Solution of Integral Equations written by Michael A. Golberg and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1979, I edited Volume 18 in this series: Solution Methods for Integral Equations: Theory and Applications. Since that time, there has been an explosive growth in all aspects of the numerical solution of integral equations. By my estimate over 2000 papers on this subject have been published in the last decade, and more than 60 books on theory and applications have appeared. In particular, as can be seen in many of the chapters in this book, integral equation techniques are playing an increas ingly important role in the solution of many scientific and engineering problems. For instance, the boundary element method discussed by Atkinson in Chapter 1 is becoming an equal partner with finite element and finite difference techniques for solving many types of partial differential equations. Obviously, in one volume it would be impossible to present a complete picture of what has taken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its infancy. Today, as shown by Golberg and Elliott in Chapters 5 and 6, the theory of polynomial approximations is essentially complete, although many details of practical implementation remain to be worked out.

Book Approximation Methods for Solutions of Differential and Integral Equations

Download or read book Approximation Methods for Solutions of Differential and Integral Equations written by V. K. Dzyadyk and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-11-05 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: No detailed description available for "Approximation Methods for Solutions of Differential and Integral Equations".

Book Numerical Methods III   Approximation of Functions

Download or read book Numerical Methods III Approximation of Functions written by Boris Obsieger and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Normal 0 21 false false false HR X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Obična tablica"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The book is written primarily for the students on technical universities, but also as a useful handbook for engineers and PhD students. It introduces reader into various types of approximations of functions, which are defined either explicitly or by their values in the distinct set of points, as well as into economisation of existing approximation formulas. Why the approximation of functions is so important? Simply because various functions cannot be calculated without approximation. Approximation formulas for some of these functions (such as trigonometric functions and logarithms) are already implemented in the calculators and standard computer libraries, providing the precision to all bits of memory in which a value is stored. So high precision is not usually required in the engineering practice, and use more numerical operations that is really necessary. Economised approximation formulas can provide required precision with less numerical operation, and can made numerical algorithms faster, especially when such formulas are used in nested loops. The other important use of approximation is in calculating functions that are defined by values in the chosen set of points, such as in solving integral equations (usually obtained from differential equations). The book is divided into five chapters. In the first chapter are briefly explained basic principles of approximations, i.e. approximations near the chosen point (by Maclaurin, Taylor or Padé expansion), principles of approximations with orthogonal series and principles of least squares approximations. In the second chapter, various types of least squares polynomial approximations, particularly those by using orthogonal polynomials such as Legendre, Jacobi, Laguerre, Hermite, Zernike and Gram polynomials are explained. Third chapter explains approximations with Fourier series, which are the base for developing approximations with Chebyshev polynomials (fourth chapter). Uniform approximation and further usage of Chebyshev polynomials in the almost uniform approximation, as well as in economisation of existing approximation formulas, are described in fifth chapter. Practical applications of described approximation procedures are supported by 35 algorithms and 40 examples. Besides its practical usage, the given text with 36 figures and 11 tables, partially in colour, represents a valuable background for understanding, developing and applying various numerical methods, such as interpolation, numerical integration and solving partial differential equations, which are topics in the further volumes of the series Numerical Methods.

Book The Numerical Solution of Integral Equations of the Second Kind

Download or read book The Numerical Solution of Integral Equations of the Second Kind written by Kendall E. Atkinson and published by Cambridge University Press. This book was released on 1997-06-28 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an extensive introduction to the numerical solution of a large class of integral equations.

Book Numerical Computations  Theory and Algorithms

Download or read book Numerical Computations Theory and Algorithms written by Yaroslav D. Sergeyev and published by Springer Nature. This book was released on 2020-02-13 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume set LNCS 11973 and 11974 constitute revised selected papers from the Third International Conference on Numerical Computations: Theory and Algorithms, NUMTA 2019, held in Crotone, Italy, in June 2019. This volume, LNCS 11973, consists of 34 full and 18 short papers chosen among papers presented at special streams and sessions of the Conference. The papers in part I were organized following the topics of these special sessions: approximation: methods, algorithms, and applications; computational methods for data analysis; first order methods in optimization: theory and applications; high performance computing in modelling and simulation; numbers, algorithms, and applications; optimization and management of water supply.

Book Near Extensions and Alignment of Data in R n

Download or read book Near Extensions and Alignment of Data in R n written by Steven B. Damelin and published by John Wiley & Sons. This book was released on 2024-01-29 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive resource illustrating the mathematical richness of Whitney Extension Problems, enabling readers to develop new insights, tools, and mathematical techniques The Whitney Near Extension Problem demonstrates a range of hitherto unknown connections between current research problems in engineering, mathematics, and data science, exploring the mathematical richness of near Whitney Extension Problems, and presenting a new nexus of applied, pure and computational harmonic analysis, approximation theory, data science, and real algebraic geometry. For example, the book uncovers connections between near Whitney Extension Problems and the problem of alignment of data in Euclidean space, an area of considerable interest in computer vision. Written by a highly qualified author, The Whitney Near Extension Problem includes information on: Areas of mathematics and statistics, such as harmonic analysis, functional analysis, and approximation theory, that have driven significant advances in the field Development of algorithms to enable the processing and analysis of huge amounts of data and data sets Why and how the mathematical underpinning of many current data science tools needs to be better developed to be useful New insights, potential tools, and mathematical techniques to solve problems in Whitney extensions, signal processing, shortest paths, clustering, computer vision, optimal transport, manifold learning, minimal energy, and equidistribution Providing comprehensive coverage of several subjects, The Whitney Near Extension Problem is an essential resource for mathematicians, applied mathematicians, and engineers working on problems related to data science, signal processing, computer vision, manifold learning, and optimal transport.

Book Analytical and Numerical Methods for Volterra Equations

Download or read book Analytical and Numerical Methods for Volterra Equations written by Peter Linz and published by SIAM. This book was released on 1985-01-01 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.

Book Computational Methods for Integral Equations

Download or read book Computational Methods for Integral Equations written by L. M. Delves and published by CUP Archive. This book was released on 1985 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a readable account of techniques for numerical solutions.

Book Computational Methods for Linear Integral Equations

Download or read book Computational Methods for Linear Integral Equations written by Prem Kythe and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents numerical methods and computational aspects for linear integral equations. Such equations occur in various areas of applied mathematics, physics, and engineering. The material covered in this book, though not exhaustive, offers useful techniques for solving a variety of problems. Historical information cover ing the nineteenth and twentieth centuries is available in fragments in Kantorovich and Krylov (1958), Anselone (1964), Mikhlin (1967), Lonseth (1977), Atkinson (1976), Baker (1978), Kondo (1991), and Brunner (1997). Integral equations are encountered in a variety of applications in many fields including continuum mechanics, potential theory, geophysics, electricity and mag netism, kinetic theory of gases, hereditary phenomena in physics and biology, renewal theory, quantum mechanics, radiation, optimization, optimal control sys tems, communication theory, mathematical economics, population genetics, queue ing theory, and medicine. Most of the boundary value problems involving differ ential equations can be converted into problems in integral equations, but there are certain problems which can be formulated only in terms of integral equations. A computational approach to the solution of integral equations is, therefore, an essential branch of scientific inquiry.

Book Interpolation Processes

    Book Details:
  • Author : Giuseppe Mastroianni
  • Publisher : Springer Science & Business Media
  • Release : 2008-08-24
  • ISBN : 3540683496
  • Pages : 452 pages

Download or read book Interpolation Processes written by Giuseppe Mastroianni and published by Springer Science & Business Media. This book was released on 2008-08-24 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interpolation of functions is one of the basic part of Approximation Theory. There are many books on approximation theory, including interpolation methods that - peared in the last fty years, but a few of them are devoted only to interpolation processes. An example is the book of J. Szabados and P. Vértesi: Interpolation of Functions, published in 1990 by World Scienti c. Also, two books deal with a special interpolation problem, the so-called Birkhoff interpolation, written by G.G. Lorentz, K. Jetter, S.D. Riemenschneider (1983) and Y.G. Shi (2003). The classical books on interpolation address numerous negative results, i.e., - sultsondivergentinterpolationprocesses,usuallyconstructedoversomeequidistant system of nodes. The present book deals mainly with new results on convergent - terpolation processes in uniform norm, for algebraic and trigonometric polynomials, not yet published in other textbooks and monographs on approximation theory and numerical mathematics. Basic tools in this eld (orthogonal polynomials, moduli of smoothness,K-functionals, etc.), as well as some selected applications in numerical integration, integral equations, moment-preserving approximation and summation of slowly convergent series are also given. The rstchapterprovidesanaccountofbasicfactsonapproximationbyalgebraic and trigonometric polynomials introducing the most important concepts on appro- mation of functions. Especially, in Sect. 1.4 we give basic results on interpolation by algebraic polynomials, including representations and computation of interpolation polynomials, Lagrange operators, interpolation errors and uniform convergence in some important classes of functions, as well as an account on the Lebesgue function and some estimates for the Lebesgue constant.

Book Approximate Calculation of Integrals

Download or read book Approximate Calculation of Integrals written by Vladimir Ivanovich Krylov and published by . This book was released on 1962 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Theory of Approximate Methods and Their Applications to the Numerical Solution of Singular Integral Equations

Download or read book The Theory of Approximate Methods and Their Applications to the Numerical Solution of Singular Integral Equations written by A.A. Ivanov and published by Springer Science & Business Media. This book was released on 1976-06-30 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sparse Polynomial Approximation of High Dimensional Functions

Download or read book Sparse Polynomial Approximation of High Dimensional Functions written by Ben Adcock and published by SIAM. This book was released on 2022-02-16 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over seventy years ago, Richard Bellman coined the term “the curse of dimensionality” to describe phenomena and computational challenges that arise in high dimensions. These challenges, in tandem with the ubiquity of high-dimensional functions in real-world applications, have led to a lengthy, focused research effort on high-dimensional approximation—that is, the development of methods for approximating functions of many variables accurately and efficiently from data. This book provides an in-depth treatment of one of the latest installments in this long and ongoing story: sparse polynomial approximation methods. These methods have emerged as useful tools for various high-dimensional approximation tasks arising in a range of applications in computational science and engineering. It begins with a comprehensive overview of best s-term polynomial approximation theory for holomorphic, high-dimensional functions, as well as a detailed survey of applications to parametric differential equations. It then describes methods for computing sparse polynomial approximations, focusing on least squares and compressed sensing techniques. Sparse Polynomial Approximation of High-Dimensional Functions presents the first comprehensive and unified treatment of polynomial approximation techniques that can mitigate the curse of dimensionality in high-dimensional approximation, including least squares and compressed sensing. It develops main concepts in a mathematically rigorous manner, with full proofs given wherever possible, and it contains many numerical examples, each accompanied by downloadable code. The authors provide an extensive bibliography of over 350 relevant references, with an additional annotated bibliography available on the book’s companion website (www.sparse-hd-book.com). This text is aimed at graduate students, postdoctoral fellows, and researchers in mathematics, computer science, and engineering who are interested in high-dimensional polynomial approximation techniques.

Book Strong Asymptotics for Extremal Polynomials Associated with Weights on R

Download or read book Strong Asymptotics for Extremal Polynomials Associated with Weights on R written by Doron S. Lubinsky and published by Springer. This book was released on 2006-11-14 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: 0. The results are consequences of a strengthened form of the following assertion: Given 0 p, f Lp ( ) and a certain sequence of positive numbers associated with Q(x), there exist polynomials Pn of degree at most n, n = 1,2,3..., such that if and only if f(x) = 0 for a.e.

Book Toeplitz Matrices and Singular Integral Equations

Download or read book Toeplitz Matrices and Singular Integral Equations written by Albrecht Böttcher and published by Birkhäuser. This book was released on 2012-12-06 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, dedicated to Bernd Silbermann on his sixtieth birthday, collects research articles on Toeplitz matrices and singular integral equations written by leading area experts. The subjects of the contributions include Banach algebraic methods, Toeplitz determinants and random matrix theory, Fredholm theory and numerical analysis for singular integral equations, and efficient algorithms for linear systems with structured matrices, and reflect Bernd Silbermann's broad spectrum of research interests. The volume also contains a biographical essay and a list of publications. The book is addressed to a wide audience in the mathematical and engineering sciences. The articles are carefully written and are accessible to motivated readers with basic knowledge in functional analysis and operator theory.

Book Differential Quadrature and Its Application in Engineering

Download or read book Differential Quadrature and Its Application in Engineering written by Chang Shu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past few years, the differential quadrature method has been applied extensively in engineering. This book, aimed primarily at practising engineers, scientists and graduate students, gives a systematic description of the mathematical fundamentals of differential quadrature and its detailed implementation in solving Helmholtz problems and problems of flow, structure and vibration. Differential quadrature provides a global approach to numerical discretization, which approximates the derivatives by a linear weighted sum of all the functional values in the whole domain. Following the analysis of function approximation and the analysis of a linear vector space, it is shown in the book that the weighting coefficients of the polynomial-based, Fourier expansion-based, and exponential-based differential quadrature methods can be computed explicitly. It is also demonstrated that the polynomial-based differential quadrature method is equivalent to the highest-order finite difference scheme. Furthermore, the relationship between differential quadrature and conventional spectral collocation is analysed. The book contains material on: - Linear Vector Space Analysis and the Approximation of a Function; - Polynomial-, Fourier Expansion- and Exponential-based Differential Quadrature; - Differential Quadrature Weighting Coefficient Matrices; - Solution of Differential Quadrature-resultant Equations; - The Solution of Incompressible Navier-Stokes and Helmholtz Equations; - Structural and Vibrational Analysis Applications; - Generalized Integral Quadrature and its Application in the Solution of Boundary Layer Equations. Three FORTRAN programs for simulation of driven cavity flow, vibration analysis of plate and Helmholtz eigenvalue problems respectively, are appended. These sample programs should give the reader a better understanding of differential quadrature and can easily be modified to solve the readers own engineering problems.