EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Attractors for Equations of Mathematical Physics

Download or read book Attractors for Equations of Mathematical Physics written by Vladimir V. Chepyzhov and published by American Mathematical Soc.. This book was released on 2002 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the major problems in the study of evolution equations of mathematical physics is the investigation of the behavior of the solutions to these equations when time is large or tends to infinity. The related important questions concern the stability of solutions or the character of the instability if a solution is unstable. In the last few decades, considerable progress in this area has been achieved in the study of autonomous evolution partial differential equations. For anumber of basic evolution equations of mathematical physics, it was shown that the long time behavior of their solutions can be characterized by a very important notion of a global attractor of the equation. In this book, the authors study new problems related to the theory of infinite-dimensionaldynamical systems that were intensively developed during the last 20 years. They construct the attractors and study their properties for various non-autonomous equations of mathematical physics: the 2D and 3D Navier-Stokes systems, reaction-diffusion systems, dissipative wave equations, the complex Ginzburg-Landau equation, and others. Since, as it is shown, the attractors usually have infinite dimension, the research is focused on the Kolmogorov $\varepsilon$-entropy of attractors. Upperestimates for the $\varepsilon$-entropy of uniform attractors of non-autonomous equations in terms of $\varepsilon$-entropy of time-dependent coefficients are proved. Also, the authors construct attractors for those equations of mathematical physics for which the solution of the corresponding Cauchyproblem is not unique or the uniqueness is not proved. The theory of the trajectory attractors for these equations is developed, which is later used to construct global attractors for equations without uniqueness. The method of trajectory attractors is applied to the study of finite-dimensional approximations of attractors. The perturbation theory for trajectory and global attractors is developed and used in the study of the attractors of equations with terms rapidly oscillating with respect tospatial and time variables. It is shown that the attractors of these equations are contained in a thin neighborhood of the attractor of the averaged equation. The book gives systematic treatment to the theory of attractors of autonomous and non-autonomous evolution equations of mathematical physics.It can be used both by specialists and by those who want to get acquainted with this rapidly growing and important area of mathematics.

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2006 with total page 958 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Nonlinear Schr  dinger Equation

Download or read book The Nonlinear Schr dinger Equation written by Catherine Sulem and published by Springer Science & Business Media. This book was released on 2007-06-30 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filling the gap between the mathematical literature and applications to domains, the authors have chosen to address the problem of wave collapse by several methods ranging from rigorous mathematical analysis to formal aymptotic expansions and numerical simulations.

Book Attractors of Evolution Equations

Download or read book Attractors of Evolution Equations written by A.V. Babin and published by Elsevier. This book was released on 1992-03-09 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: Problems, ideas and notions from the theory of finite-dimensional dynamical systems have penetrated deeply into the theory of infinite-dimensional systems and partial differential equations. From the standpoint of the theory of the dynamical systems, many scientists have investigated the evolutionary equations of mathematical physics. Such equations include the Navier-Stokes system, magneto-hydrodynamics equations, reaction-diffusion equations, and damped semilinear wave equations. Due to the recent efforts of many mathematicians, it has been established that the attractor of the Navier-Stokes system, which attracts (in an appropriate functional space) as t - ∞ all trajectories of this system, is a compact finite-dimensional (in the sense of Hausdorff) set. Upper and lower bounds (in terms of the Reynolds number) for the dimension of the attractor were found. These results for the Navier-Stokes system have stimulated investigations of attractors of other equations of mathematical physics. For certain problems, in particular for reaction-diffusion systems and nonlinear damped wave equations, mathematicians have established the existence of the attractors and their basic properties; furthermore, they proved that, as t - +∞, an infinite-dimensional dynamics described by these equations and systems uniformly approaches a finite-dimensional dynamics on the attractor U, which, in the case being considered, is the union of smooth manifolds. This book is devoted to these and several other topics related to the behaviour as t - ∞ of solutions for evolutionary equations.

Book Nonlinear Dispersive Equations

Download or read book Nonlinear Dispersive Equations written by Terence Tao and published by American Mathematical Soc.. This book was released on 2006 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Starting only with a basic knowledge of graduate real analysis and Fourier analysis, the text first presents basic nonlinear tools such as the bootstrap method and perturbation theory in the simpler context of nonlinear ODE, then introduces the harmonic analysis and geometric tools used to control linear dispersive PDE. These methods are then combined to study four model nonlinear dispersive equations. Through extensive exercises, diagrams, and informal discussion, the book gives a rigorous theoretical treatment of the material, the real-world intuition and heuristics that underlie the subject, as well as mentioning connections with other areas of PDE, harmonic analysis, and dynamical systems.".

Book Nonlinear Dispersive Equations

Download or read book Nonlinear Dispersive Equations written by Jaime Angulo Pava and published by American Mathematical Soc.. This book was released on 2009 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained presentation of classical and new methods for studying wave phenomena that are related to the existence and stability of solitary and periodic travelling wave solutions for nonlinear dispersive evolution equations. Simplicity, concrete examples, and applications are emphasized throughout in order to make the material easily accessible. The list of classical nonlinear dispersive equations studied include Korteweg-de Vries, Benjamin-Ono, and Schrodinger equations. Many special Jacobian elliptic functions play a role in these examples. The author brings the reader to the forefront of knowledge about some aspects of the theory and motivates future developments in this fascinating and rapidly growing field. The book can be used as an instructive study guide as well as a reference by students and mature scientists interested in nonlinear wave phenomena.

Book New Trends in the Theory of Hyperbolic Equations

Download or read book New Trends in the Theory of Hyperbolic Equations written by Michael Reissig and published by Springer Science & Business Media. This book was released on 2005-07-19 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents several recent developments in the theory of hyperbolic equations. The carefully selected invited and peer-reviewed contributions deal with questions of low regularity, critical growth, ill-posedness, decay estimates for solutions of different non-linear hyperbolic models, and introduce new approaches based on microlocal methods.

Book Stochastic Processes in Physics and Engineering

Download or read book Stochastic Processes in Physics and Engineering written by Sergio Albeverio and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. O. K. Chesterton. The Scandal of Father 'The Hermit Qad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gu!ik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Book Fourier Series in Control Theory

Download or read book Fourier Series in Control Theory written by Vilmos Komornik and published by Springer Science & Business Media. This book was released on 2005-01-27 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first serious attempt to gather all of the available theory of "nonharmonic Fourier series" in one place, combining published results with new results by the authors.

Book Mathematics of Wave Phenomena

Download or read book Mathematics of Wave Phenomena written by Willy Dörfler and published by Springer Nature. This book was released on 2020-10-01 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wave phenomena are ubiquitous in nature. Their mathematical modeling, simulation and analysis lead to fascinating and challenging problems in both analysis and numerical mathematics. These challenges and their impact on significant applications have inspired major results and methods about wave-type equations in both fields of mathematics. The Conference on Mathematics of Wave Phenomena 2018 held in Karlsruhe, Germany, was devoted to these topics and attracted internationally renowned experts from a broad range of fields. These conference proceedings present new ideas, results, and techniques from this exciting research area.

Book Applied Mathematics

    Book Details:
  • Author : J. David Logan
  • Publisher : John Wiley & Sons
  • Release : 2013-06-18
  • ISBN : 1118501705
  • Pages : 688 pages

Download or read book Applied Mathematics written by J. David Logan and published by John Wiley & Sons. This book was released on 2013-06-18 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Third Edition “Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference.” —MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and natural sciences. The Fourth Edition covers both standard and modern topics, including scaling and dimensional analysis; regular and singular perturbation; calculus of variations; Green’s functions and integral equations; nonlinear wave propagation; and stability and bifurcation. The book provides extended coverage of mathematical biology, including biochemical kinetics, epidemiology, viral dynamics, and parasitic disease. In addition, the new edition features: Expanded coverage on orthogonality, boundary value problems, and distributions, all of which are motivated by solvability and eigenvalue problems in elementary linear algebra Additional MATLAB® applications for computer algebra system calculations Over 300 exercises and 100 illustrations that demonstrate important concepts New examples of dimensional analysis and scaling along with new tables of dimensions and units for easy reference Review material, theory, and examples of ordinary differential equations New material on applications to quantum mechanics, chemical kinetics, and modeling diseases and viruses Written at an accessible level for readers in a wide range of scientific fields, Applied Mathematics, Fourth Edition is an ideal text for introducing modern and advanced techniques of applied mathematics to upper-undergraduate and graduate-level students in mathematics, science, and engineering. The book is also a valuable reference for engineers and scientists in government and industry.

Book Fourier Analysis and Nonlinear Partial Differential Equations

Download or read book Fourier Analysis and Nonlinear Partial Differential Equations written by Hajer Bahouri and published by Springer Science & Business Media. This book was released on 2011-01-03 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.

Book Dispersive Partial Differential Equations

Download or read book Dispersive Partial Differential Equations written by M. Burak Erdoğan and published by Cambridge University Press. This book was released on 2016-05-12 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces nonlinear dispersive partial differential equations in a detailed yet elementary way without compromising the depth and richness of the subject.

Book Fractals in Graz 2001

    Book Details:
  • Author : Peter J. Grabner
  • Publisher : Springer Science & Business Media
  • Release : 2003
  • ISBN : 9783764370060
  • Pages : 300 pages

Download or read book Fractals in Graz 2001 written by Peter J. Grabner and published by Springer Science & Business Media. This book was released on 2003 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the proceedings of the conference "Fractals in Graz 2001 - Analysis, Dynamics, Geometry, Stochastics" that was held in the second week of June 2001 at Graz University of Technology, in the capital of Styria, southeastern province of Austria. The scientific committee of the meeting consisted of M. Barlow (Vancouver), R. Strichartz (Ithaca), P. Grabner and W. Woess (both Graz), the latter two being the local organizers and editors of this volume. We made an effort to unite in the conference as well as in the present pro ceedings a multitude of different directions of active current work, and to bring together researchers from various countries as well as research fields that all are linked in some way with the modern theory of fractal structures. Although (or because) in Graz there is only a very small group working on fractal structures, consisting of "non-insiders", we hope to have been successful with this program of wide horizons. All papers were written upon explicit invitation by the editors, and we are happy to be able to present this representative panorama of recent work on poten tial theory, random walks, spectral theory, fractal groups, dynamic systems, fractal geometry, and more. The papers presented here underwent a refereeing process.

Book Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains

Download or read book Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains written by Michail Borsuk and published by Elsevier. This book was released on 2006-01-12 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains a systematic treatment of the qualitative theory of elliptic boundary value problems for linear and quasilinear second order equations in non-smooth domains. The authors concentrate on the following fundamental results: sharp estimates for strong and weak solutions, solvability of the boundary value problems, regularity assertions for solutions near singular points.Key features:* New the Hardy – Friedrichs – Wirtinger type inequalities as well as new integral inequalities related to the Cauchy problem for a differential equation.* Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this.* The question about the influence of the coefficients smoothness on the regularity of solutions.* New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points.* The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems.* The behaviour of weak solutions near conical point for the Dirichlet problem for m – Laplacian.* The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration.* Precise exponents of the solution decreasing rate near boundary singular points and best possible conditions for this.* The question about the influence of the coefficients smoothness on the regularity of solutions.* New existence theorems for the Dirichlet problem for linear and quasilinear equations in domains with conical points.* The precise power modulus of continuity at singular boundary point for solutions of the Dirichlet, mixed and the Robin problems.* The behaviour of weak solutions near conical point for the Dirichlet problem for m - Laplacian.* The behaviour of weak solutions near a boundary edge for the Dirichlet and mixed problem for elliptic quasilinear equations with triple degeneration.

Book Physics on Manifolds

    Book Details:
  • Author : M. Flato
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 9401119384
  • Pages : 365 pages

Download or read book Physics on Manifolds written by M. Flato and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Colloquium "Analysis, Manifolds and Physics" organized in honour of Yvonne Choquet-Bruhat by her friends, collaborators and former students, on June 3, 4 and 5, 1992 in Paris. Its title accurately reflects the domains to which Yvonne Choquet-Bruhat has made essential contributions. Since the rise of General Relativity, the geometry of Manifolds has become a non-trivial part of space-time physics. At the same time, Functional Analysis has been of enormous importance in Quantum Mechanics, and Quantum Field Theory. Its role becomes decisive when one considers the global behaviour of solutions of differential systems on manifolds. In this sense, General Relativity is an exceptional theory in which the solutions of a highly non-linear system of partial differential equations define by themselves the very manifold on which they are supposed to exist. This is why a solution of Einstein's equations cannot be physically interpreted before its global behaviour is known, taking into account the entire hypothetical underlying manifold. In her youth, Yvonne Choquet-Bruhat contributed in a spectacular way to this domain stretching between physics and mathematics, when she gave the proof of the existence of solutions to Einstein's equations on differential manifolds of a quite general type. The methods she created have been worked out by the French school of mathematics, principally by Jean Leray. Her first proof of the local existence and uniqueness of solutions of Einstein's equations inspired Jean Leray's theory of general hyperbolic systems.

Book Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps

Download or read book Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps written by Viviane Baladi and published by Springer. This book was released on 2018-05-09 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: The spectra of transfer operators associated to dynamical systems, when acting on suitable Banach spaces, contain key information about the ergodic properties of the systems. Focusing on expanding and hyperbolic maps, this book gives a self-contained account on the relation between zeroes of dynamical determinants, poles of dynamical zeta functions, and the discrete spectra of the transfer operators. In the hyperbolic case, the first key step consists in constructing a suitable Banach space of anisotropic distributions. The first part of the book is devoted to the easier case of expanding endomorphisms, showing how the (isotropic) function spaces relevant there can be studied via Paley–Littlewood decompositions, and allowing easier access to the construction of the anisotropic spaces which is performed in the second part. This is the first book describing the use of anisotropic spaces in dynamics. Aimed at researchers and graduate students, it presents results and techniques developed since the beginning of the twenty-first century.