EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Selective Catalytic Reduction of NO with Ammonia Over Nanostructure H ZSM 5 Supported Transition Metal Oxide Catalysts

Download or read book Selective Catalytic Reduction of NO with Ammonia Over Nanostructure H ZSM 5 Supported Transition Metal Oxide Catalysts written by A. Niaei and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Selective Catalytic Reduction of NO with Ammonia over Nanostructure H-ZSM-5 Supported Transition Metal Oxide Catalysts.

Book Selective Catalytic Reduction of NOx

Download or read book Selective Catalytic Reduction of NOx written by Oliver Kröcher and published by MDPI. This book was released on 2018-12-14 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Selective Catalytic Reduction of NOx" that was published in Catalysts

Book Selective Catalytic Reduction  SCR  of Nitric Oxide with Ammonia Using Cu ZSM 5 and Va based Honeycomb Monolith Catalysts

Download or read book Selective Catalytic Reduction SCR of Nitric Oxide with Ammonia Using Cu ZSM 5 and Va based Honeycomb Monolith Catalysts written by Saurabh Gupta and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work, the steady-state performance of zeolite-based (Cu-ZSM-5) and vanadium-based honeycomb monolith catalysts was investigated in the selective catalytic reduction process (SCR) for NO removal using NH3. The aim was to delineate the effect of various parameters including pretreatment of the catalyst sample with H2, NH3-to-NO ratio, inlet oxygen concentration, and space velocity. The concentrations of the species (e.g. NO, NH3, and others) were determined using a Fourier Transform Infrared (FTIR) spectrometer. The temperature was varied from ambient (25 C) to 500 C. The investigation showed that all of the above parameters (except pre-treatment with H2) significantly affected the peak NO reduction, the temperature at which peak NO reduction occurred, and residual ammonia left at higher temperatures (also known as 'NH3 slip'). Depending upon the particular values of the parameters, a peak NO reduction of around 90% was obtained for both the catalysts. However, an accompanied generation of N2O and NO2 species was observed as well, being much higher for the vanadium-based catalyst than for the Cu-ZSM-5 catalyst. For both catalysts, the peak NO reduction decreased with an increase in space velocity, and did not change significantly with an increase in oxygen concentration. The temperatures at which peak NO reduction and complete NH3 removal occurred increased with an increase in space velocity but decreased with an increase in oxygen concentration. The presence of more ammonia at the inlet (i.e. higher NH3-to-NO ratio) improved the peak NO reduction but simultaneously resulted in an increase in residual ammonia. Pretreatment of the catalyst sample with H2 (performed only for the Cu-ZSM-5 catalyst) did not produce any perceivable difference in any of the results for the conditions of these experiments.

Book Selective Catalytic Oxidation of Ammonia Using Copper and Iron Supported on ZSM 5 Catalysts

Download or read book Selective Catalytic Oxidation of Ammonia Using Copper and Iron Supported on ZSM 5 Catalysts written by Mohammed Ali H. Saad and published by . This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Selective Catalytic Reduction of Nitric Oxide by Ammonia Over Iron Exchanged Y Zeolites

Download or read book Selective Catalytic Reduction of Nitric Oxide by Ammonia Over Iron Exchanged Y Zeolites written by Michael Dimitrios Amiridis and published by . This book was released on 1991 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Selective Catalytic Oxidation of Ammonia Using Copper and Iron Supported on ZSM 5 Catalysts

Download or read book Selective Catalytic Oxidation of Ammonia Using Copper and Iron Supported on ZSM 5 Catalysts written by Mohammed Ali H. Saad and published by . This book was released on 2010 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book X Ray Absorption and X Ray Emission Spectroscopy

Download or read book X Ray Absorption and X Ray Emission Spectroscopy written by Jeroen A. van Bokhoven and published by John Wiley & Sons. This book was released on 2016-03-21 with total page 940 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last two decades, remarkable and often spectacular progress has been made in the methodological and instrumental aspects of x–ray absorption and emission spectroscopy. This progress includes considerable technological improvements in the design and production of detectors especially with the development and expansion of large-scale synchrotron reactors All this has resulted in improved analytical performance and new applications, as well as in the perspective of a dramatic enhancement in the potential of x–ray based analysis techniques for the near future. This comprehensive two-volume treatise features articles that explain the phenomena and describe examples of X–ray absorption and emission applications in several fields, including chemistry, biochemistry, catalysis, amorphous and liquid systems, synchrotron radiation, and surface phenomena. Contributors explain the underlying theory, how to set up X–ray absorption experiments, and how to analyze the details of the resulting spectra. X-Ray Absorption and X-ray Emission Spectroscopy: Theory and Applications: Combines the theory, instrumentation and applications of x-ray absorption and emission spectroscopies which offer unique diagnostics to study almost any object in the Universe. Is the go-to reference book in the subject for all researchers across multi-disciplines since intense beams from modern sources have revolutionized x-ray science in recent years Is relevant to students, postdocurates and researchers working on x-rays and related synchrotron sources and applications in materials, physics, medicine, environment/geology, and biomedical materials

Book Development and Characterization of Mixed Oxide Catalysts for the Selective Catlytic Reduction of Nitric Oxide from Stationary Sources Using Amonnia

Download or read book Development and Characterization of Mixed Oxide Catalysts for the Selective Catlytic Reduction of Nitric Oxide from Stationary Sources Using Amonnia written by and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Seven first row transition metals were deposited on various commercial TiO2, SiO2, and Al2 O3 supports to create mono- and bimetallic catalysts that were compared in the selective catalytic reduction of nitric oxide using ammonia at low temperatures ranging from 373-523 K. The catalyst with the highest activity both in the absence and presence of water in the feed was 20 wt.% Mn/Hombikat TiO2 synthesized from a nitrate precursor and calcined below 673 K. Under those conditions, it was capable of achieving 100% NO conversion at 393 K. Numerous surface characterization techniques were used to identify the surface properties that result in highly active and selective low temperature SCR catalysts. The deposition of manganese as MnO2, the ease of reducibility of the metal oxide, and the symmetric deformation of ammonia coordinated to Lewis acid sites at 1167 cm−1, were all found to be important for good catalytic performance. No synergistic effects were observed from combinations of the three most active transition metals. However, MnO x -NiO/TiO2 had an extended lifetime relative to MnO x /TiO2 in feeds containing SO2 . The extensive data collected from in-situ FTIR experiments in the presence of NO and NH 3 were used to propose a reaction mechanism for MnO x /TiO2 that begins with the coordination of NH3 over Mn4 species and proceeds through the formation of bridged nitrates. A combination of potentiometric titrations and UV/Vis spectroscopy were used to quantify the reduction of V5 to V4 after the addition of oxalic acid as the solution is aged. After approximately four hours, the aging vanadium oxalate solution reaches steady state, and the final distribution of the vanadium present is 89% V+4 and 11% V+5 . TiO2 supported monolayer catalysts synthesized from the aged (V+4) vanadium oxalate solution consistently outperformed catalysts made from freshly prepared (V+5) vanadium oxalate solutions. Surface characterization revealed that surface acid sites increase in strength and vanadia reduces more easily in catalysts synthesized from aged vanadium oxalate solutions, which enhances reaction mechanism depends upon acid sites and redox operation.

Book Selective Catalytic Reduction  SCR  of Nitrogen Oxides with Ammonia Over Fe ZSM5

Download or read book Selective Catalytic Reduction SCR of Nitrogen Oxides with Ammonia Over Fe ZSM5 written by Mukundan Devadas and published by . This book was released on 2006 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Low Temperature Selective Catalytic Reduction  SCR  of Nitric Oxide  NO  on Active Carbon Fibre  ACF  Supported Transition Metal Catalysts

Download or read book Low Temperature Selective Catalytic Reduction SCR of Nitric Oxide NO on Active Carbon Fibre ACF Supported Transition Metal Catalysts written by David Madill and published by . This book was released on 2002 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling of Selective Catalytic Reduction  SCR  of Nitric Oxide with Ammonia Using Four Modern Catalysts

Download or read book Modeling of Selective Catalytic Reduction SCR of Nitric Oxide with Ammonia Using Four Modern Catalysts written by Giriraj Sharma and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work, the steady-state performance of zeolite-based Cu-ZSM-5, vanadium based honeycomb monolith catalysts (V), vanadium-titanium based pillared inter layered clay catalyst (V-Ti PLIC) and vanadium-titanium-tungsten-based honeycomb monolith catalysts (V-Ti-W) was investigated in the selective catalytic reduction process (SCR) for NO removal using NH3 in presence of oxygen. The objective is to obtain the expression that would predict the conversion performance of the catalysts for different values of the SCR process parameters, namely temperature, inlet oxygen concentration and inlet ammonia concentration. The NO[subscript]x emission, its formation and control methods are discussed briefly and then the fundamentals of the SCR process are described. Heat transfer based and chemical kinetics based SCR process models are discussed and widely used rate order based model are reviewed. Based on the experimental data, regression analysis was performed that gives an expression for predicting the SCR rate for the complete temperature range and the rate order with respect to inlet oxygen and ammonia concentration. The average activation energy for the SCR process was calculated and optimum operating conditions were determined for each of the catalyst. The applicable operating range for the catalyst depends on the NO conversion as well as on the ammonia slip and the N2O and NO2 emission. The regression analysis was repeated for the applicable range and an expression was obtained that can be used to estimate the catalyst performance. For the Cu-ZSM-5, the best performance was observed for 400°C, 660 ppm inlet ammonia concentration and 0.1% inlet oxygen concentration. For the V based honeycomb monolith catalyst, the best performance was observed for 300°C, 264 ppm inlet ammonia concentration and 3% inlet oxygen concentration. For the V-Ti based PLIC catalyst, the best performance was observed for 350°C, 330 ppm inlet ammonia concentration and 3% inlet oxygen concentration. For the V-Ti-W based honeycomb monolith catalyst, the best performance was observed for 300°C, 330 ppm inlet ammonia concentration and 3% inlet oxygen concentration. The conversion performance of all of these catalysts is satisfactory for the industrial application. At the operating conditions listed above, the N2O emission is less than 20 ppm and the NO2 emission is less than 10 ppm. The results were validated by comparing the findings with the similar work by other research groups. The mechanism of SCR process is discussed for each of the catalyst. The probable reactions are listed and adsorption and desorption process are studied. The various mechanisms proposed by the researchers are discussed briefly. It is concluded that V-Ti-W and Cu-ZSM-5 catalyst are very promising for SCR of NO[subscript]x. The expressions can be used to estimate the conversion performance and can be utilized for optimal design and operation. The expressions relate the SCR rate to the input parameters such as temperature and inlet oxygen and ammonia concentration hence by controlling these parameters desired NO[subscript]x reduction can be achieved with minimal cost and emission.

Book Selective Catalytic Reduction  SCR  of Nitric Oxide  NO  with Ammonia Over Vanadia based and Pillared Interlayer Clay based Catalysts

Download or read book Selective Catalytic Reduction SCR of Nitric Oxide NO with Ammonia Over Vanadia based and Pillared Interlayer Clay based Catalysts written by Hyuk Jin Oh and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The selective catalytic reduction (SCR) of nitric oxide (NO) with ammonia over vanadia-based (V2O5-WO3/TiO2) and pillared interlayer clay-based (V2O5/Ti-PILC) monolithic honeycomb catalysts using a laboratory laminar-flow reactor was investigated. The experiments used a number of gas compositions to simulate different combustion gases. A Fourier transform infrared (FTIR) spectrometer was used to determine the concentrations of the product species. The major products were nitric oxide (NO), ammonia (NH3), nitrous oxide (N2O), and nitrogen dioxide (NO2). The aim was to delineate the effect of various parameters including reaction temperature, oxygen concentration, NH3-to-NO ratio, space velocity, heating area, catalyst arrangement, and vanadium coating on the removal of nitric oxide. The investigation showed that the change of the parameters significantly affected the removals of NO and NH3 species, the residual NH3 concentration (or NH3 slip), the temperature of the maximum NO reduction, and the temperature of complete NH3 conversion. The reaction temperature was increased from the ambient temperature (25°C) to 450°C. For both catalysts, high NO and NH3 removals were obtained in the presence of a small amount of oxygen, but no significant influence was observed from 0.1 to 3.0% O2. An increase in NH3-to-NO ratio increased NO reduction but decreased NH3 conversions. For V2O5-WO3/TiO2, the decrease of space velocity increased NO and NH3 removals and broadened the active temperature window (based on NO> 88% and NH3> 87%) about 50°C. An increase in heating area decreased the reaction temperature of the maximum NO reduction from 350 to 300 ʻC, and caused the active reaction temperature window (between 250 and 400 ʻC) to shift toward 50 ʻC lower reaction temperatures (between 200 and 350°C). The change of catalyst arrangements resulted slight improvement for NO and NH3 removals, therefore, the change might contribute to more gas removals. The catalyst with extra vanadium coating showed higher NO reductions and NH3 conversions than the catalyst without the extra vanadium coating.

Book Studies on Metal Oxide Catalysts for Selective Catalytic Reduction of NOx with NH3

Download or read book Studies on Metal Oxide Catalysts for Selective Catalytic Reduction of NOx with NH3 written by Mikaela Wallin and published by . This book was released on 2002 with total page 31 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book One dimensional  1 D  Nanostructured Metal Oxides for Catalytic Oxidation of Hydrocarbons

Download or read book One dimensional 1 D Nanostructured Metal Oxides for Catalytic Oxidation of Hydrocarbons written by Yunzhe Feng and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Catalytic oxidation of hydrocarbons has been intensively studied, with the purpose of minimizing emissions of pollutants and facilitating the combustion process. Noble metals, such as platinum and palladium, are the most effective catalysts for the oxidation of hydrocarbons. However, the limited supply of these noble metals imposes a need for developing alternative catalysts. Transition metal oxides are attractive alternatives due to their high thermal stability and low cost. Previous studies of metal oxide catalysts have focused on metal oxide nanoparticles (NPs) supported on porous substrates, such as Al2O3, ZrO2 and spinel-type (AB2O4) supports. Although the dispersed metal species over large surface area have shown much higher activity than the bulk metal oxide, there are several limitations. First, interactions between the support and NPs at high temperatures impede the fundamental understanding of the catalytic properties of individual NPs, and limit their application conditions. Moreover, the solid supports limit the loading of NPs because NPs tend to aggregate at large loadings, leading to a decrease in catalytic activity. Herein, one-dimensional (1-D) nanostructured metal oxide were directly grown on metal mesh substrates and used as catalysts for hydrocarbons oxidation. The 1-D nanostructured catalysts benefits from reduced interaction with the substrates, great flexibility in increasing the catalyst loading, and convenience in tuning the surface chemistry for higher catalytic activity, thus exhibit comparable or better catalytic activity and stability compared to the supported NPs. As one of the most active metal oxide catalysts, CuO was used as a model system to demonstrate the effectiveness of the 1-D nanostructured metal oxide catalysts. CuO NWs have been grown on Cu mesh by solid phase diffusion and applied to catalyze methane oxidation reactions. The CuO NWs have shown comparable or even better activity and stability than the supported CuO NPs. Moreover, owing to the fact that the NWs were exposed on the substrate surface and easy to access, two methods were used to tune the NWs for enhanced catalytic activity. The first one was to reduce the CuO NWs to more active Cu2O NWs by H2 plasma, which has shown 20% increase activity for CH4 oxidation reactions and several times higher activity for CO oxidation reactions. The kinetics study have shown that the bulk oxygen diffusion in Cu2O was faster, which could be one of the reasons for higher activity of Cu2O than that of CuO. The second tuning method was to decorate the CuO NWs with more active NP materials, such as Co3O4 and noble metals with a newly developed simple, fast and general sol-flame method. After the Co3O4 decoration, the CuO NWs surface was uniformly and densely covered by Co3O4 NP-chain structures, with large NP loading, high surface area and minimal aggregation, resulting in times higher activity in catalyzing CH4 oxidation. Moreover, this sol-flame method is a general method to decorate NWs with various NPs, and even to dope NWs with dopants for desirable properties. Given the generality and simplicity of the sol-flame methods, it can be applied to not only catalysis, but also other important application areas, such as lithium ion battery, supercapacitor and photoelectrochemical devices. In addition, to incorporate Cu and Co, the most active metal oxide catalyst Co3O4 was grown as 1-D structure on stainless steel mesh with the Cu2+ ion enhanced ammonia-evaporation-induced synthesis method. The synergetic effects of Cu and Co in catalytic process were studied, which have shown that the Cu2+ improved the nucleation and growth process of 1-D Co3O4, however, the catalytic activity is mainly from the Co species.