EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Plasmonic Thin Film Solar Cells

Download or read book Plasmonic Thin Film Solar Cells written by Qiuping Huang and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin film solar cell technology represents an alternative way to effectively solve the world's increasing energy shortage problem. Light trapping is of critical importance. Surface plasmons (SPs), including both localized surface plasmons (LSPs) excited in the metallic nanoparticles and surface plasmon polaritons (SPPs) propagating at the metal/semiconductor interfaces, have been so far extensively investigated with great interests in designing thin film solar cells. In this chapter, plasmonic structures to improve the performance of thin film solar cell are reviewed according to their positions of the nanostructures, which can be divided into at least three ways: directly on top of thin film solar cell, embedded at the bottom or middle of the optical absorber layer, and hybrid of metallic nanostructures with nanowire of optical absorber layer.

Book Nanostructured Solar Cells

Download or read book Nanostructured Solar Cells written by Narottam Das and published by BoD – Books on Demand. This book was released on 2017-02-22 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructured solar cells are very important in renewable energy sector as well as in environmental aspects, because it is environment friendly. The nano-grating structures (such as triangular or conical shaped) have a gradual change in refractive index which acts as a multilayer antireflective coating that is leading to reduced light reflection losses over broadband ranges of wavelength and angle of incidence. There are different types of losses in solar cells that always reduce the conversion efficiency, but the light reflection loss is the most important factor that decreases the conversion efficiency of solar cells significantly. The antireflective coating is an optical coating which is applied to the surface of lenses or any optical devices to reduce the light reflection losses. This coating assists for the light trapping capturing capacity or improves the efficiency of optical devices, such as lenses or solar cells. Hence, the multilayer antireflective coatings can reduce the light reflection losses and increases the conversion efficiency of nanostructured solar cells.

Book Fundamentals of Solar Cell Design

Download or read book Fundamentals of Solar Cell Design written by Inamuddin and published by John Wiley & Sons. This book was released on 2021-08-24 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.

Book Light Trapping with Plasmonic Back Contacts in Thin Film Silicon Solar Cells

Download or read book Light Trapping with Plasmonic Back Contacts in Thin Film Silicon Solar Cells written by Ulrich Wilhelm Paetzold and published by Forschungszentrum Jülich. This book was released on 2013 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Simulation of Plasmonic Nanoparticles in Thin Film Solar Cells

Download or read book Simulation of Plasmonic Nanoparticles in Thin Film Solar Cells written by Phillip Manley and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thin Film Solar Cells

    Book Details:
  • Author : Jef Poortmans
  • Publisher : John Wiley & Sons
  • Release : 2006-10-16
  • ISBN : 0470091266
  • Pages : 504 pages

Download or read book Thin Film Solar Cells written by Jef Poortmans and published by John Wiley & Sons. This book was released on 2006-10-16 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin-film solar cells are either emerging or about to emerge from the research laboratory to become commercially available devices finding practical various applications. Currently no textbook outlining the basic theoretical background, methods of fabrication and applications currently exist. Thus, this book aims to present for the first time an in-depth overview of this topic covering a broad range of thin-film solar cell technologies including both organic and inorganic materials, presented in a systematic fashion, by the scientific leaders in the respective domains. It covers a broad range of related topics, from physical principles to design, fabrication, characterization, and applications of novel photovoltaic devices.

Book Intelligent Computing Applications for Sustainable Real World Systems

Download or read book Intelligent Computing Applications for Sustainable Real World Systems written by Manjaree Pandit and published by Springer Nature. This book was released on 2020-04-03 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book delves into various solution paradigms such as artificial neural network, support vector machine, wavelet transforms, evolutionary computing, swarm intelligence. During the last decade, novel solution technologies based on human and species intelligence have gained immense popularity due to their flexible and unconventional approach. New analytical tools are also being developed to handle big data processing and smart decision making. The idea behind compiling this work is to familiarize researchers, academicians, industry persons and students with various applications of intelligent techniques for producing sustainable, cost-effective and robust solutions of frequently encountered complex, real-world problems in engineering and science disciplines. The practical problems in smart grids, communication, waste management, elimination of harmful elements from nature, etc., are identified, and smart and optimal solutions are proposed.

Book Solar Cell Nanotechnology

Download or read book Solar Cell Nanotechnology written by Atul Tiwari and published by Wiley-Scrivener. This book was released on 2013-10-21 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on the cutting-edge technologies available in the field of photovoltaics, Solar Cell Nanotechnology explores the latest research and development activities related to organic, inorganic, and hybrid materials being used in solar cell manufacturing. Several chapters are dedicated to explaining the fundamentals of photovoltaics and nanomaterials utilized in the manufacturing of solar cells. Other essential subjects, such as microcontact printing, plasmonic light trapping, outdoor and indoor efficiency, luminescent solar concentrators, and photon management in photovoltaics, are comprehensively reviewed. Written for a broad audience, this is an essential book for engineers, nanotechnologists, and materials scientists.

Book Surface Plasmon Enhanced Organic Thin Film Solar Cells

Download or read book Surface Plasmon Enhanced Organic Thin Film Solar Cells written by and published by . This book was released on 2010 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: The effects of surface plasmon on the performance of organic solar cells were investigated. Metallic nanoparticles fabricated using thermal anneal and Nanosphere lithography were experimentally and theoretically studied to understand their corresponding surface plasmon resonance. Near-field Scanning Optical Microscopy (NSOM) was used to investigate the strength of the optical near-field that is very close to the metal nanoparticles when illuminated with light that was resonant to the metal nanoparticles. NSOM measurements revealed great electric fields created due to the effects of surface plasmon of metal nanoparticles. Integration of selected metal nanoparticles and organic thin film were investigated. Further investigation of the plasmonic-enhanced photonic devices is emphasized as future goal as well as the development of Nanosphere lithography. A fast and economic nanofabrication technique will find a suitable application in the optoelectronic industry. The results from this research will greatly improve the understanding of the plasmonic-enhanced photonic devices and find new application in the development of future technologies.

Book Plasmonic Resonances and Their Application to Thin Film Solar Cell

Download or read book Plasmonic Resonances and Their Application to Thin Film Solar Cell written by Nilesh Kumar Pathak and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This chapter furnishes the plasmonic properties of metal nanostructure and its application to thin-film solar cell. Plasmonics is an emerging branch of nanooptics where light metal interaction in subwavelength domain is studied. Metal supports surface plasmon resonance that has tunable signature, which depends on the morphology as well as surrounding media. These plasmonic resonances can be tuned in a broader range of solar spectra by changing several parameters such as size, shape and medium. Moreover, metals show scattering properties that could be utilized to enhance optical path length of photon inside the thin film of solar device. The chapter mainly focusses on the study of plasmonic resonance of smaller- and larger-sized metal nanoparticle using semi-analytical as well as numerical approach. For the estimation of optical properties like extinction spectrum and field profile of larger-sized nanoparticle, finite-difference time-domain (FDTD) method is used. The field distribution in both silver and gold nanoparticle cases has been plotted in 'on' resonance condition, which has a broader range of applications.

Book Light Absorption in Thin Film Solar Cells Using Plasmonic Nanostructures

Download or read book Light Absorption in Thin Film Solar Cells Using Plasmonic Nanostructures written by Ahmed bin Nasser Al-Shidhani and published by . This book was released on 2017 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Emerging Solar Energy Materials

Download or read book Emerging Solar Energy Materials written by Sadia Ameen and published by BoD – Books on Demand. This book was released on 2018-08-01 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the fundamental understanding of the functioning of solar cellsand the materials for the effective utilization of energy resources. The main objective of writing this book is to create a comprehensive and easy-to-understand source of information on the advances in the rapidly growing research on solar cells. Emerging Solar Energy Materials comprises 12 chapters written by the experts in the solar cell field and is organized with the intention to provide a big picture of the latest progress in the solar cell field and at the same time give an in-depth discussion on fundamentals of solar cells for interested audiences. In this book, each part opens with a new author's essay highlighting their work for contribution toward solar energy. Critical, cutting-edge subjects are addressed, including: Photovoltaic device technology and energy applications; Functional solar energy materials; New concept in solar energy; Perovskite solar cells; Dye-sensitized solar cells; Organic solar cells; Thin-film solar cells. The book is written for a large and broad readership including researchers and university graduate students from diverse backgrounds such as chemistry, physics, materials science, and photovoltaic device technology. The book includes enough information on the basics to be used as a textbook undergraduate coursework in engineering and the sciences.

Book Experimental Relations of Gold  and Other Metals  to Light

Download or read book Experimental Relations of Gold and Other Metals to Light written by Michael Faraday and published by . This book was released on 1857 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Enhancing Solar Cells with Plasmonic Nanovoids

Download or read book Enhancing Solar Cells with Plasmonic Nanovoids written by Niraj Narsey Lal and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis explores the use of plasmonic nanovoids for enhancing the efficiency of thin-film solar cells. Devices are fabricated inside plasmonically resonant nanostructures, demonstrating a new class of plasmonic photovoltaics. Novel cell geometries are developed for both organic and amorphous silicon solar cell materials. An external-quantum efficency rig was set up to allow simultaneous microscope access and micrometer-precision probe-tip control for optoelectronic characterisation of photovoltaic devices. An experimental setup for angle-resolved re ectance was extended to allow broadband illumination from 380 - 1500nm across incident angles 0 - 70 degrees giving detailed access to the energy-momentum dispersion of optical modes within nanostructured materials. A four-fold enhancement of overall power conversion efficiency is observed in organic nanovoid solar cells compared to at solar cells. The efficiency enhancement is shown to be primarily due to strong localised plasmon resonances of the nanovoid geometry, with close agreement observed between experiment and theoretical simulations. Ultrathin amorphous silicon solar cells are fabricated on both nanovoids and randomly textured silver substrates. Angle-resolved re ectance and computational simulations highlight the importance of the spacer layer separating the absorbing and plasmonic materials. A 20% enhancement of cell efficiency is observed for nanovoid solar cells compared to at, but with careful optimisation of the spacer layer, randomly textured silver allows for an even greater enhancement of up to 50% by controlling the coupling to optical modes within the device. The differences between plasmonic enhancement for organic and amorphous silicon solar cells are discussed and the balance of surface plasmon absorption between a semiconductor and a metal is analytically derived for a broad range of solar cell materials, yielding clear design principles for plasmonic enhancement. These principles are used to outline future directions of research for plasmonic photovoltaics.

Book Solar Cells from Earth Abundant Semiconductors with Plasmon Enhanced Light Absorption

Download or read book Solar Cells from Earth Abundant Semiconductors with Plasmon Enhanced Light Absorption written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Progress is reported in these areas: Plasmonic Light Trapping in Thin Film a-Si Solar Cells; Plasmonic Light Trapping in Thin InGaN Quantum Well Solar Cells; and Earth Abundant Cu2O and Zn3P2 Solar Cells.

Book Plasmonic and Photonic Designs for Light Trapping in Thin Film Solar Cells

Download or read book Plasmonic and Photonic Designs for Light Trapping in Thin Film Solar Cells written by Liming Ji and published by . This book was released on 2012 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin film solar cells are promising to realize cheap solar energy. Compared to conventional wafer cells, they can reduce the use of semiconductor material by 90%. The efficiency of thin film solar cells, however, is limited due to insufficient light absorption. Sufficient light absorption at the bandgap of semiconductor requires a light path more than 10x the thickness of the semiconductor. Advanced designs for light trapping are necessary for solar cells to absorb sufficient light within a limited volume of semiconductor. The goal is to convert the incident light into a trapped mode in the semiconductor layer. In this dissertation, a critical review of currently used methods for light trapping in solar cells is presented. The disadvantage of each design is pointed out including insufficient enhancement, undesired optical loss and undesired loss in carrier transport. The focus of the dissertation is light trapping by plasmonic and photonic structures in thin film Si solar cells. The performance of light trapping by plasmonic structures is dependent on the efficiency of photon radiation from plasmonic structures. The theory of antenna radiation is used to study the radiation by plasmonic structures. In order to achieve efficient photon radiation at a plasmonic resonance, a proper distribution of surface charges is necessary. The planar fishnet structure is proposed as a substitution for plasmonic particles. Large particles are required in order to resonate at the bandgap of semiconductor material. Hence, the resulting overall thickness of solar cells with large particles is large. Instead, the resonance of fishnet structure can be tuned without affecting the overall cell thickness. Numerical simulation shows that the enhancement of light absorption in the active layer is over 10x compared to the same cell without fishnet. Photons radiated from the resonating fishnet structure travel in multiple directions within the semiconductor layer. There is enhanced field localization due to interference. The short circuit current was enhanced by 13.29%. Photonic structures such as nanodomes and gratings are studied. Compared to existing designs, photonic structures studied in this dissertation exhibited further improvements in light absorption and carrier transport. The nanodome geometry was combined with conductive charge collectors in order to perform simultaneous enhancement in optics and carrier transport. Despite the increased volume of semiconductor material, the collection length for carriers is less than the diffusion length for minority carriers. The nanodome geometry can be used in the back end and the front end of solar cells. A blazed grating structure made of transparent conductive oxide serves as the back passivation layer while enhancing light absorption. The surface area of the absorber is increased by only 15%, indicating a limited increase in surface recombination. The resulting short circuit current is enhanced by over 20%. The designs presented in the dissertation have demonstrated enhancement in Si thin film solar cells. The enhancement is achieved without hurting carrier transport in solar cells. As a result, the enhancement in light absorption can efficiently convert to the enhancement in cell efficiency. The fabrication of the proposed designs in this dissertation involves expensive process such as electron beam lithography. Future work is focused on optical designs that are feasible for cheap fabrication process. The designs studied in this dissertation can serve as prototype designs for future work.

Book Plasmonic Mirror for Light trapping in Thin Film Solar Cells

Download or read book Plasmonic Mirror for Light trapping in Thin Film Solar Cells written by Rufina Sesuraj and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: