Download or read book Nonlinear Mathematical Physics and Natural Hazards written by Boyka Aneva and published by Springer. This book was released on 2015-02-12 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to current advances in the field of nonlinear mathematical physics and modeling of critical phenomena that can lead to catastrophic events. Pursuing a multidisciplinary approach, it gathers the work of scientists who are developing mathematical and computational methods for the study and analysis of nonlinear phenomena and who are working actively to apply these tools and create conditions to mitigate and reduce the negative consequences of natural and socio-economic disaster risk. This book summarizes the contributions of the International School and Workshop on Nonlinear Mathematical Physics and Natural Hazards, organized within the framework of the South East Europe Network in Mathematical and Theoretical Physics (SEENET MTP) and supported by UNESCO. It was held at the Bulgarian Academy of Sciences from November 28 to December 2, 2013. The contributions are divided into two major parts in keeping with the scientific program of the meeting. Among the topics covered in Part I (Nonlinear Mathematical Physics towards Critical Phenomena) are predictions and correlations in self organized criticality, space-time structure of extreme current and activity events in exclusion processes, quantum spin chains and integrability of many-body systems, applications of discriminantly separable polynomials, MKdV-type equations, and chaotic behavior in Yang-Mills theories. Part II (Seismic Hazard and Risk) is devoted to probabilistic seismic hazard assessment, seismic risk mapping, seismic monitoring, networking and data processing in Europe, mainly in South-East Europe. The book aims to promote collaboration at the regional and European level to better understand and model phenomena that can cause natural and socio-economic disasters, and to contribute to the joint efforts to mitigate the negative consequence of natural disasters. This collection of papers reflects contemporary efforts on capacity building through developing skills, exchanging knowledge and practicing mathematical methods for modeling nonlinear phenomena, disaster risk preparedness and natural hazards mitigation. The target audience includes students and researchers in mathematical and theoretical physics, earth physics, applied physics, geophysics, seismology and earthquake danger and risk mitigation.
Download or read book From Particle Systems to Partial Differential Equations II written by Patrícia Gonçalves and published by Springer. This book was released on 2015-04-04 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on mathematical problems concerning different applications in physics, engineering, chemistry and biology. It covers topics ranging from interacting particle systems to partial differential equations (PDEs), statistical mechanics and dynamical systems. The purpose of the second meeting on Particle Systems and PDEs was to bring together renowned researchers working actively in the respective fields, to discuss their topics of expertise and to present recent scientific results in both areas. Further, the meeting was intended to present the subject of interacting particle systems, its roots in and impacts on the field of physics and its relation with PDEs to a vast and varied public, including young researchers. The book also includes the notes from two mini-courses presented at the conference, allowing readers who are less familiar with these areas of mathematics to more easily approach them. The contributions will be of interest to mathematicians, theoretical physicists and other researchers interested in interacting particle systems, partial differential equations, statistical mechanics, stochastic processes, kinetic theory, dynamical systems and mathematical modeling aspects.
Download or read book Nonlinear Mathematical Physics and Natural Hazards written by Boyka Aneva and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to current advances in the field of nonlinear mathematical physics and modeling of critical phenomena that can lead to catastrophic events. Pursuing a multidisciplinary approach, it gathers the work of scientists who are developing mathematical and computational methods for the study and analysis of nonlinear phenomena and who are working actively to apply these tools and create conditions to mitigate and reduce the negative consequences of natural and socio-economic disaster risk. This book summarizes the contributions of the International School and Workshop on Nonlinear Mathematical Physics and Natural Hazards, organized within the framework of the South East Europe Network in Mathematical and Theoretical Physics (SEENET MTP) and supported by UNESCO. It was held at the Bulgarian Academy of Sciences from November 28 to December 2, 2013. The contributions are divided into two major parts in keeping with the scientific program of the meeting. Among the topics covered in Part I (Nonlinear Mathematical Physics towards Critical Phenomena) are predictions and correlations in self organized criticality, space-time structure of extreme current and activity events in exclusion processes, quantum spin chains and integrability of many-body systems, applications of discriminantly separable polynomials, MKdV-type equations, and chaotic behavior in Yang-Mills theories. Part II (Seismic Hazard and Risk) is devoted to probabilistic seismic hazard assessment, seismic risk mapping, seismic monitoring, networking and data processing in Europe, mainly in South-East Europe. The book aims to promote collaboration at the regional and European level to better understand and model phenomena that can cause natural and socio-economic disasters, and to contribute to the joint efforts to mitigate the negative consequence of natural disasters. This collection of papers reflects contemporary efforts on capacity building through developing skills, exchanging knowledge and practicing mathematical methods for modeling nonlinear phenomena, disaster risk preparedness and natural hazards mitigation. The target audience includes students and researchers in mathematical and theoretical physics, earth physics, applied physics, geophysics, seismology and earthquake danger and risk mitigation.
Download or read book Spinning Strings and Correlation Functions in the AdS CFT Correspondence written by Juan Miguel Nieto and published by Springer. This book was released on 2018-07-21 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses several aspects of the integrable structure of the AdS/CFT correspondence. In particular it presents computations made on both sides of the AdS/CFT correspondence, at weak and at strong coupling. On the string theory side of the correspondence, the book focuses on the evaluation of the energy spectrum of closed string solutions moving in some deformed backgrounds that preserve integrability. On the gauge theory side, it explores various formal problems arising in the computation of two and three-point functions by means of the Algebraic Bethe Ansatz and the Quantum Inverse Scattering method. The book features numerous results on integrability in the context of the AdS/CFT correspondence. Self-contained and pedagogical, it includes general discussions and detailed presentations on the use of integrable systems techniques and their applications.
Download or read book Pre Earthquake Processes written by Dimitar Ouzounov and published by John Wiley & Sons. This book was released on 2018-07-18 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pre-Earthquake signals are advanced warnings of a larger seismic event. A better understanding of these processes can help to predict the characteristics of the subsequent mainshock. Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies presents the latest research on earthquake forecasting and prediction based on observations and physical modeling in China, Greece, Italy, France, Japan, Russia, Taiwan, and the United States. Volume highlights include: Describes the earthquake processes and the observed physical signals that precede them Explores the relationship between pre-earthquake activity and the characteristics of subsequent seismic events Encompasses physical, atmospheric, geochemical, and historical characteristics of pre-earthquakes Illustrates thermal infrared, seismo–ionospheric, and other satellite and ground-based pre-earthquake anomalies Applies these multidisciplinary data to earthquake forecasting and prediction Written for seismologists, geophysicists, geochemists, physical scientists, students and others, Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies offers an essential resource for understanding the dynamics of pre-earthquake phenomena from an international and multidisciplinary perspective.
Download or read book Earthquakes and Sustainable Infrastructure written by Giuliano Panza and published by Elsevier. This book was released on 2021-05-21 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Earthquakes and Sustainable Infrastructure: Neodeterministic (NDSHA) Approach Guarantees Prevention Rather Than Cure communicates in one comprehensive volume the state-of-the-art scientific knowledge on earthquakes and related risks. Earthquakes occur in a seemingly random way and, in some cases, it is possible to trace seismicity back to the concept of deterministic chaos. Therefore, seismicity can be explained by a deterministic mechanism that arises as a result of various convection movements in the Earth's mantle, expressed in the modern movement of lithospheric plates fueled by tidal forces. Consequently, to move from a perspective focused on the response to emergencies to a new perspective based on prevention and sustainability, it is necessary to follow this neodeterministic approach (NDSHA) to guarantee prevention, saving lives and infrastructure. This book describes in a complete and consistent way an effective explanation to complex structures, systems, and components, and prescribes solutions to practical challenges. It reflects the scientific novelty and promises a feasible, workable, theoretical and applicative attitude. Earthquakes and Sustainable Infrastructure serves a "commentary role for developers and designers of critical infrastructure and unique installations. Commentary-like roles follow standard, where there is no standard. Mega-installations embody/potentiate risks; nonetheless, lack a comprehensive classic standard. Every compound is unique, one of its kind, and differs from others even of similar function. There is no justification to elaborate a common standard for unique entities. On the other hand, these specific installations, for example, NPPs, Naval Ports, Suez Canal, HazMat production sites, and nuclear waste deposits, impose security and safety challenges to people and the environment. The book offers a benchmark for entrepreneurs, designers, constructors, and operators on how to compile diverse relevant information on site-effects and integrate it into the best-educated guess to keep safe and secure, people and environment. The authors are eager to convey the entire information and explanations to our readers, without missing either accurate information or explanations. That is achieved by "miniaturization, as much is possible, not minimization. So far, the neodeterministic method has been successfully applied in numerous metropolitan areas and regions such as Delhi (India), Beijing (China), Naples (Italy), Algiers (Algeria), Cairo (Egypt), Santiago de Cuba (Cuba), Thessaloniki (Greece), South-East Asia (2004), Tohoku, Japan (2011), Albania (2019), Bangladesh, Iran, Sumatra, Ecuador, and elsewhere. Earthquakes and Sustainable Infrastructure includes case studies from these areas, as well as suggested applications to other seismically active areas around the globe. NDSHA approaches confirm/validate that science is looming to warn. Concurrently, leaders and practitioners have to learn to use rectified science in favor of peoples' safety. State-of-the-art science does have the know-how to reduce casualties and structural damage from potential catastrophes to a bearable incident. - The only book to cover earthquake prediction and preparation from a neo-deterministic (NDSHA) approach - Includes case studies from metropolitan areas where the neo-deterministic method has been successfully applied - Editors and authors include top experts in academia, disaster prevention, and preparedness management
Download or read book Non Linear Mathematics Vol I written by Thomas L., Saaty and published by RWS Publications. This book was released on 2014-12-22 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: "We are surrounded and deeply involved, in the natural world, with non- linear events which are not necessarily mathematical," the authors write. "For example . . . the nonlinear problem of pedalling a bicycle up and down a hillside. On a grand scale . . . the struggle for existence between two species, one of which preys exclusively on the other." This book is' for mathematicians and researchers who believe that "nonlinear mathematics is' the mathematics of today"; it is also for economists, engineers, operations analysts, "the reader who has been thus bemused into an artificially linear conception of the universe." Nonlinear Mathematics is the first attempt to consider the widest range of nonlinear topics found in the -scattered literature. Accessible to non- mathematics professionals as well as college seniors and graduates, it offers a discussion both particular and broad enough to stimulate research towards a unifying theory of nonlinear mathematics. Ideas are presented "according to existence and uniqueness theorems, characterization (e.g., stability and asymptotic behavior), construction of solutions, convergence, approximation and errors."
Download or read book Extreme Man Made and Natural Hazards in Dynamics of Structures written by Adnan Ibrahimbegovic and published by Springer Science & Business Media. This book was released on 2007-05-16 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a critical assessment of current knowledge and indicates new challenges which are brought about at present times by fighting man-made and natural hazards in transient analysis of structures. The latter concerns both permanently fixed structures, such as those built to protect people and/or sensitive storage material; or special structures, like bridges and tunnels; and moving structures such as trains, planes, ships or cars.
Download or read book Symmetry and Exact Solutions of Nonlinear Mathematical Physics Equations written by Gangwei Wang and published by Frontiers Media SA. This book was released on 2024-08-13 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear problems, originating from applied science that is closely related to practices, contain rich and extensive content. It makes the corresponding nonlinear models also complex and diverse. Due to the intricacy and contingency of nonlinear problems, unified mathematical methods still remain far and few between. In this regard, the comprehensive use of symmetric methods, along with other mathematical methods, becomes an effective option to solve nonlinear problems.
Download or read book From Preparation to Faulting Multidisciplinary Investigations on Earthquake Processes volume II written by Fuqiong Huang and published by Frontiers Media SA. This book was released on 2024-10-18 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Research Topic is Volume II of a series. The previous volume can be found here: From Preparation to Faulting: Multidisciplinary Investigations on Earthquake Processes What happens before an earthquake occurs? What are the physical processes that take place in the Earth’s crust before the earthquake nucleates? How can we observe, describe, and model them statistically, numerically, and physically in multiscales from samples in laboratory to tectonic plate of earth? During the last few decades many efforts have been devoted to multidisciplinary studies in an attempt to answer these fundamental questions. Previously, the Institute of Physics of the Earth (IPE) model (dry) and Dilatancy Diffusion (DD) model (wet) were proposed for earthquake processes. Like Schrödinger's cat, earthquakes are unpredictable—according to the IPE model, yet they can be predictable—according to DD model. Recently, with advanced techniques, some scientists have declaimed that there are precursors to be used for earthquake forecasting, which offers new opportunities to study earthquake precursors.
Download or read book Journal of Nonlinear Mathematical Physics Vol 14 written by and published by atlantis press. This book was released on with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nonlinear and Modern Mathematical Physics written by Solomon Manukure and published by Springer Nature. This book was released on with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Mathematics Of Natural Catastrophes written by Gordon Woo and published by World Scientific. This book was released on 1999-10-15 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a unique book about natural catastrophes, focusing on the mathematical aspects of these phenomena. Although academic in style and didactic in purpose, it is practical in the treatment of the diverse issues covered, which range from hazard warning and forecasting to engineering design criteria and insurance loss estimation. Addressing as it does many mathematical topics not found together in a single volume, the book should be of value to all those with a quantitative educational interest in or professional concern for natural catastrophes.
Download or read book 3D Modeling of Nonlinear Wave Phenomena on Shallow Water Surfaces written by Iftikhar B. Abbasov and published by John Wiley & Sons. This book was released on 2018-01-31 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: With climate change, erosion, and human encroachment on coastal environments growing all over the world, it is increasingly important to protect populations and environments close to the sea from storms, tsunamis, and other events that can be not just costly to property but deadly. This book is one step in bringing the science of protection from these events forward, the most in-depth study of its kind ever published. The analytic and numerical modeling problems of nonlinear wave activities in shallow water are analyzed in this work. Using the author's unique method described herein, the equations of shallow water are solved, and asymmetries that cannot be described by the Stokes theory are solved. Based on analytical expressions, the impacts of dispersion effects to wave profiles transformation are taken into account. The 3D models of the distribution and refraction of nonlinear surface gravity wave at the various coast formations are introduced, as well. The work covers the problems of numerical simulation of the run-up of nonlinear surface gravity waves in shallow water, transformation of the surface waves for the 1D case, and models for the refraction of numerical modeling of the run-up of nonlinear surface gravity waves at beach approach of various slopes. 2D and 3D modeling of nonlinear surface gravity waves are based on Navier-Stokes equations. In 2D modeling the influence of the bottom of the coastal zone on flooding of the coastal zone during storm surges was investigated. Various stages of the run-up of nonlinear surface gravity waves are introduced and analyzed. The 3D modeling process of the run-up is tested for the coast protection work of the slope type construction. Useful for students and veteran engineers and scientists alike, this is the only book covering these important issues facing anyone working with coastal models and ocean, coastal, and civil engineering in this area.
Download or read book Irregularities and Prediction of Major Disasters written by Yi Lin and published by CRC Press. This book was released on 2010-03-18 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although scientists have effectively employed the concepts of probability to address the complex problem of prediction, modern science still falls short in establishing true predictions with meaningful lead times of zero-probability major disasters. The recent earthquakes in Haiti, Chile, and China are tragic reminders of the critical need for
Download or read book Nonlinear Solid Mechanics written by Adnan Ibrahimbegovic and published by Springer Science & Business Media. This book was released on 2009-04-02 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a recipe for constructing the numerical models for representing the complex nonlinear behavior of structures and their components, represented as deformable solid bodies. Its appeal extends to those interested in linear problems of mechanics.
Download or read book Science and Engineering of Freak Waves written by Nobuhito Mori and published by Elsevier. This book was released on 2023-10-31 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Science and Engineering of Freak Waves provides a holistic and interdisciplinary view of extreme ocean waves for both scientific and engineering applications. Readers will learn the fundamental theory of extreme waves and the implications they have on coastal structures and methods of prediction through chapters that review the definitions of extreme waves, their history and other important observations. After this, the book's authors describe the theory and modeling of extreme waves that occur in various situations. Final sections provide examples of the application of extreme wave research results to various engineering designs are presented. This book provides a comprehensive overview of the current status of our understandings on freak/rogue waves, the science of extreme waves, prediction, and their engineering applications. As such, it is a must read for physical oceanographers looking for a better understanding of prediction models and the history of these waves, and engineers looking for more information on preparedness and implications for offshore structures and shipping. - Presents the history of extreme wave research, including field observations, experiments, numerical modeling, data assimilation and theory - Includes numerous freak wave prediction systems and explains when and how they should be used - Showcases global case studies where prediction has or could have been used to increase preparedness - Provides sample codes so that readers can easily apply these methods to their own science