Download or read book Methods in Biomedical Informatics written by Indra Neil Sarkar and published by Academic Press. This book was released on 2013-09-03 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning with a survey of fundamental concepts associated with data integration, knowledge representation, and hypothesis generation from heterogeneous data sets, Methods in Biomedical Informatics provides a practical survey of methodologies used in biological, clinical, and public health contexts. These concepts provide the foundation for more advanced topics like information retrieval, natural language processing, Bayesian modeling, and learning classifier systems. The survey of topics then concludes with an exposition of essential methods associated with engineering, personalized medicine, and linking of genomic and clinical data. Within an overall context of the scientific method, Methods in Biomedical Informatics provides a practical coverage of topics that is specifically designed for: (1) domain experts seeking an understanding of biomedical informatics approaches for addressing specific methodological needs; or (2) biomedical informaticians seeking an approachable overview of methodologies that can be used in scenarios germane to biomedical research. - Contributors represent leading biomedical informatics experts: individuals who have demonstrated effective use of biomedical informatics methodologies in the real-world, high-quality biomedical applications - Material is presented as a balance between foundational coverage of core topics in biomedical informatics with practical "in-the-trenches" scenarios. - Contains appendices that function as primers on: (1) Unix; (2) Ruby; (3) Databases; and (4) Web Services.
Download or read book Biomedical Natural Language Processing written by Kevin Bretonnel Cohen and published by John Benjamins Publishing Company. This book was released on 2014-02-15 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomedical Natural Language Processing is a comprehensive tour through the classic and current work in the field. It discusses all subjects from both a rule-based and a machine learning approach, and also describes each subject from the perspective of both biological science and clinical medicine. The intended audience is readers who already have a background in natural language processing, but a clear introduction makes it accessible to readers from the fields of bioinformatics and computational biology, as well. The book is suitable as a reference, as well as a text for advanced courses in biomedical natural language processing and text mining.
Download or read book Artificial Intelligence written by Marco Antonio Aceves-Fernandez and published by BoD – Books on Demand. This book was released on 2018-06-27 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence (AI) is taking an increasingly important role in our society. From cars, smartphones, airplanes, consumer applications, and even medical equipment, the impact of AI is changing the world around us. The ability of machines to demonstrate advanced cognitive skills in taking decisions, learn and perceive the environment, predict certain behavior, and process written or spoken languages, among other skills, makes this discipline of paramount importance in today's world. Although AI is changing the world for the better in many applications, it also comes with its challenges. This book encompasses many applications as well as new techniques, challenges, and opportunities in this fascinating area.
Download or read book Clinical Text Mining written by Hercules Dalianis and published by Springer. This book was released on 2018-05-14 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book describes the results of natural language processing and machine learning methods applied to clinical text from electronic patient records. It is divided into twelve chapters. Chapters 1-4 discuss the history and background of the original paper-based patient records, their purpose, and how they are written and structured. These initial chapters do not require any technical or medical background knowledge. The remaining eight chapters are more technical in nature and describe various medical classifications and terminologies such as ICD diagnosis codes, SNOMED CT, MeSH, UMLS, and ATC. Chapters 5-10 cover basic tools for natural language processing and information retrieval, and how to apply them to clinical text. The difference between rule-based and machine learning-based methods, as well as between supervised and unsupervised machine learning methods, are also explained. Next, ethical concerns regarding the use of sensitive patient records for research purposes are discussed, including methods for de-identifying electronic patient records and safely storing patient records. The book’s closing chapters present a number of applications in clinical text mining and summarise the lessons learned from the previous chapters. The book provides a comprehensive overview of technical issues arising in clinical text mining, and offers a valuable guide for advanced students in health informatics, computational linguistics, and information retrieval, and for researchers entering these fields.
Download or read book Biomedical Literature Mining written by Vinod D. Kumar and published by Humana. This book was released on 2016-09-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomedical Literature Mining, discusses the multiple facets of modern biomedical literature mining and its many applications in genomics and systems biology. The volume is divided into three sections focusing on information retrieval, integrated text-mining approaches and domain-specific mining methods. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Biomedical Literature Mining is designed as a useful bioinformatics resource in biomedical literature text mining for both those long experienced in or entirely new to, the field.
Download or read book Text Mining Approaches for Biomedical Data written by Aditi Sharan and published by Springer Nature. This book was released on with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mining Text Data written by Charu C. Aggarwal and published by Springer Science & Business Media. This book was released on 2012-02-03 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.
Download or read book Biomedical Data Mining for Information Retrieval written by Sujata Dash and published by John Wiley & Sons. This book was released on 2021-08-24 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.
Download or read book Interactive Knowledge Discovery and Data Mining in Biomedical Informatics written by Andreas Holzinger and published by Springer. This book was released on 2014-06-17 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the grand challenges in our digital world are the large, complex and often weakly structured data sets, and massive amounts of unstructured information. This “big data” challenge is most evident in biomedical informatics: the trend towards precision medicine has resulted in an explosion in the amount of generated biomedical data sets. Despite the fact that human experts are very good at pattern recognition in dimensions of = 3; most of the data is high-dimensional, which makes manual analysis often impossible and neither the medical doctor nor the biomedical researcher can memorize all these facts. A synergistic combination of methodologies and approaches of two fields offer ideal conditions towards unraveling these problems: Human–Computer Interaction (HCI) and Knowledge Discovery/Data Mining (KDD), with the goal of supporting human capabilities with machine learning./ppThis state-of-the-art survey is an output of the HCI-KDD expert network and features 19 carefully selected and reviewed papers related to seven hot and promising research areas: Area 1: Data Integration, Data Pre-processing and Data Mapping; Area 2: Data Mining Algorithms; Area 3: Graph-based Data Mining; Area 4: Entropy-Based Data Mining; Area 5: Topological Data Mining; Area 6 Data Visualization and Area 7: Privacy, Data Protection, Safety and Security.
Download or read book Text Mining of Web Based Medical Content written by Amy Neustein and published by Walter de Gruyter GmbH & Co KG. This book was released on 2014-10-09 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: • Includes Text Mining and Natural Language Processing Methods for extracting information from electronic health records and biomedical literature. • Analyzes text analytic tools for new media such as online forums, social media posts, tweets and video sharing. • Demonstrates how to use speech and audio technologies for improving access to online content for the visually impaired. Text Mining of Web-Based Medical Content examines various approaches to deriving high quality information from online biomedical literature, electronic health records, query search terms, social media posts and tweets. Using some of the latest empirical methods of knowledge extraction, the authors show how online content, generated by both professionals and laypersons, can be mined for valuable information about disease processes, adverse drug reactions not captured during clinical trials, and tropical fever outbreaks. Additionally, the authors show how to perform infromation extraction on a hospital intranet, how to build a social media search engine to glean information about patients' own experiences interacting with healthcare professionals, and how to improve access to online health information. This volume provides a wealth of timely material for health informatic professionals and machine learning, data mining, and natural language researchers. Topics in this book include: • Mining Biomedical Literature and Clinical Narratives • Medication Information Extraction • Machine Learning Techniques for Mining Medical Search Queries • Detecting the Level of Personal Health Information Revealed in Social Media • Curating Layperson’s Personal Experiences with Health Care from Social Media and Twitter • Health Dialogue Systems for Improving Access to Online Content • Crowd-based Audio Clips to Improve Online Video Access for the Visually Impaired • Semantic-based Visual Information Retrieval for Mining Radiographic Image Data • Evaluating the Importance of Medical Terminology in YouTube Video Titles and Descriptions
Download or read book New Opportunities for Sentiment Analysis and Information Processing written by Sharaff, Aakanksha and published by IGI Global. This book was released on 2021-06-25 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multinational organizations have begun to realize that sentiment mining plays an important role for decision making and market strategy. The revolutionary growth of digital marketing not only changes the market game, but also brings forth new opportunities for skilled professionals and expertise. Currently, the technologies are rapidly changing, and artificial intelligence (AI) and machine learning are contributing as game-changing technologies. These are not only trending but are also increasingly popular among data scientists and data analysts. New Opportunities for Sentiment Analysis and Information Processing provides interdisciplinary research in information retrieval and sentiment analysis including studies on extracting sentiments from textual data, sentiment visualization-based dimensionality reduction for multiple features, and deep learning-based multi-domain sentiment extraction. The book also optimizes techniques used for sentiment identification and examines applications of sentiment analysis and emotion detection. Covering such topics as communication networks, natural language processing, and semantic analysis, this book is essential for data scientists, data analysts, IT specialists, scientists, researchers, academicians, and students.
Download or read book Text Mining for Biology and Biomedicine written by Sophia Ananiadou and published by Artech House Publishers. This book was released on 2006 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here's the first focused book that puts the full range of cutting-edge biological text mining techniques and tools at your command. This comprehensive volume describes the methods of natural language processing (NLP) and their applications in the biological domain, and spells out in detail the various lexical, terminological, and ontological resources now at your disposal - and how best to utilize them.
Download or read book Smart Health written by Andreas Holzinger and published by Springer. This book was released on 2015-02-24 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Prolonged life expectancy along with the increasing complexity of medicine and health services raises health costs worldwide dramatically. Whilst the smart health concept has much potential to support the concept of the emerging P4-medicine (preventive, participatory, predictive, and personalized), such high-tech medicine produces large amounts of high-dimensional, weakly-structured data sets and massive amounts of unstructured information. All these technological approaches along with “big data” are turning the medical sciences into a data-intensive science. To keep pace with the growing amounts of complex data, smart hospital approaches are a commandment of the future, necessitating context aware computing along with advanced interaction paradigms in new physical-digital ecosystems. The very successful synergistic combination of methodologies and approaches from Human-Computer Interaction (HCI) and Knowledge Discovery and Data Mining (KDD) offers ideal conditions for the vision to support human intelligence with machine learning. The papers selected for this volume focus on hot topics in smart health; they discuss open problems and future challenges in order to provide a research agenda to stimulate further research and progress.
Download or read book Biomedical Text Mining written by Kalpana Raja and published by Springer Nature. This book was released on 2022-06-17 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume details step-by-step instructions on biomedical literature mining protocols. Chapters guide readers through various topics such as, disease comorbidity, literature-based discovery, protocols to combine literature mining, machine learning for predicting biomedical discoveries, and uncovering unknown public knowledge by combining two pieces of information from different sets of PubMed articles. Additional chapters discuss the importance of data science to understand outbreaks such as COVID-19. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Biomedical Text Mining aims to be a useful practical guide to researches to help further their studies.
Download or read book Machine Learning and Knowledge Discovery in Databases written by Michelangelo Ceci and published by Springer. This book was released on 2017-12-29 with total page 881 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three volume proceedings LNAI 10534 – 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017. The total of 101 regular papers presented in part I and part II was carefully reviewed and selected from 364 submissions; there are 47 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows: Part I: anomaly detection; computer vision; ensembles and meta learning; feature selection and extraction; kernel methods; learning and optimization, matrix and tensor factorization; networks and graphs; neural networks and deep learning. Part II: pattern and sequence mining; privacy and security; probabilistic models and methods; recommendation; regression; reinforcement learning; subgroup discovery; time series and streams; transfer and multi-task learning; unsupervised and semisupervised learning. Part III: applied data science track; nectar track; and demo track.
Download or read book Natural Language Processing and Text Mining written by Anne Kao and published by Springer Science & Business Media. This book was released on 2007-03-06 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural Language Processing and Text Mining not only discusses applications of Natural Language Processing techniques to certain Text Mining tasks, but also the converse, the use of Text Mining to assist NLP. It assembles a diverse views from internationally recognized researchers and emphasizes caveats in the attempt to apply Natural Language Processing to text mining. This state-of-the-art survey is a must-have for advanced students, professionals, and researchers.
Download or read book BIOLEXICON written by Charles Blinderman and published by Charles C Thomas Publisher. This book was released on 1990-01-01 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: The vocabulary of biology is made easier through knowing the meanings of elements that make up whole words. English continues to adopt words from foreign languages and to build its vocabulary by inventing new words from old elements. Most of the words entering English every year reside in technical vocabularies and knowing what the elements mean prepares medical students and physicians, the practitioner of any biological science, and anyone else to decipher these new words that might name a newly discovered microbe or mastodon, a disease, or a surgical procedure.