EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Local Hamiltonians in Quantum Computation

Download or read book Local Hamiltonians in Quantum Computation written by Daniel Nagaj and published by . This book was released on 2008 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, I investigate aspects of local Hamiltonians in quantum computing. First, I focus on the Adiabatic Quantum Computing model, based on evolution with a time- dependent Hamiltonian. I show that to succeed using AQC, the Hamiltonian involved must have local structure, which leads to a result about eigenvalue gaps from information theory. I also improve results about simulating quantum circuits with AQC. Second, I look at classically simulating time evolution with local Hamiltonians and finding their ground state properties. I give a numerical method for finding the ground state of translationally invariant Hamiltonians on an infinite tree. This method is based on imaginary time evolution within the Matrix Product State ansatz, and uses a new method for bringing the state back to the ansatz after each imaginary time step. I then use it to investigate the phase transition in the transverse field Ising model on the Bethe lattice. Third, I focus on locally constrained quantum problems Local Hamiltonian and Quantum Satisfiability and prove several new results about their complexity. Finally, I define a Hamiltonian Quantum Cellular Automaton, a continuous-time model of computation which doesn't require control during the computation process, only preparation of product initial states. I construct two of these, showing that time evolution with a simple, local, translationally invariant and time-independent Hamiltonian can be used to simulate quantum circuits.

Book Quantum Hamiltonian Complexity

Download or read book Quantum Hamiltonian Complexity written by Sevag Gharibian and published by . This book was released on 2015-09-30 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides an introduction to the rapidly growing field of Quantum Hamiltonian Complexity, which includes the study of quantum constraint satisfaction problems. It provides a computer science-oriented introduction to the subject in order to help bridge the language barrier between computer scientists and physicists in the field.

Book Quantum Proofs  the Local Hamiltonian Problem and Applications

Download or read book Quantum Proofs the Local Hamiltonian Problem and Applications written by Alex Bredariol Grilo and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In QMA, the quantum generalization of the complexity class NP, a quantum state is provided as a proof of a mathematical statement, and this quantum proof can be verified by a quantum algorithm. This complexity class has a very natural complete problem, the Local Hamiltonian problem. Inspired by Condensed Matters Physics, this problem concerns the groundstate energy of quantum systems. In this thesis, we study some problems related to QMA and to the Local Hamiltonian problem. First, we study the difference of power when classical or quantum proofs are provided to quantum verification algorithms. We propose an intermediate setting where the proof is a “simpler” quantum state, and we manage to prove that these simpler states are enough to solve all problems in QMA. From this result, we are able to present a new QMA-complete problem and we also study the one-sided error version of our new complexity class. Secondly, we propose the first relativistic verifiable delegation scheme for quantum computation. In this setting, a classical client delegates her quantumcomputation to two entangled servers who are allowed to communicate, but respecting the assumption that information cannot be propagated faster than speed of light. This protocol is achieved through a one-round two-prover game for the Local Hamiltonian problem where provers only need polynomial time quantum computation and access to copies of the groundstate of the Hamiltonian. Finally, we study the quantumPCP conjecture, which asks if all problems in QMA accept aproof systemwhere only a fewqubits of the proof are checked. Our result consists in proposing an extension of QPCP proof systems where the verifier is also provided an auxiliary classical proof. Based on this proof system, we propose a weaker version of QPCP conjecture. We then show that this new conjecture can be formulated as a Local Hamiltonian problem and also as a problem involving the maximum acceptance probability of multi-prover games. This is the first equivalence of a multi-prover game and some QPCP statement.

Book FSTTCS 2004  Foundations of Software Technology and Theoretical Computer Science

Download or read book FSTTCS 2004 Foundations of Software Technology and Theoretical Computer Science written by Kamal Lodaya and published by Springer Science & Business Media. This book was released on 2004-12-02 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 24th International Conference on the Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2004, held in Chennai, India, in December 2004. The 35 revised full papers presented together with 5 invited papers were carefully reviewed and selected from 176 submissions. The papers address a broad variety of current issues in software science, programming theory, systems design and analysis, formal methods, mathematical logic, mathematical foundations, discrete mathematics, combinatorial mathematics, complexity theory, automata theory, and theoretical computer science in general.

Book Quantum Information Meets Quantum Matter

Download or read book Quantum Information Meets Quantum Matter written by Bei Zeng and published by Springer. This book was released on 2019-03-28 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book approaches condensed matter physics from the perspective of quantum information science, focusing on systems with strong interaction and unconventional order for which the usual condensed matter methods like the Landau paradigm or the free fermion framework break down. Concepts and tools in quantum information science such as entanglement, quantum circuits, and the tensor network representation prove to be highly useful in studying such systems. The goal of this book is to introduce these techniques and show how they lead to a new systematic way of characterizing and classifying quantum phases in condensed matter systems. The first part of the book introduces some basic concepts in quantum information theory which are then used to study the central topic explained in Part II: local Hamiltonians and their ground states. Part III focuses on one of the major new phenomena in strongly interacting systems, the topological order, and shows how it can essentially be defined and characterized in terms of entanglement. Part IV shows that the key entanglement structure of topological states can be captured using the tensor network representation, which provides a powerful tool in the classification of quantum phases. Finally, Part V discusses the exciting prospect at the intersection of quantum information and condensed matter physics – the unification of information and matter. Intended for graduate students and researchers in condensed matter physics, quantum information science and related fields, the book is self-contained and no prior knowledge of these topics is assumed.

Book Quantum Proofs

    Book Details:
  • Author : Thomas Vidick
  • Publisher : Foundations and Trends (R) in Theoretical Computer Science
  • Release : 2016-03-30
  • ISBN : 9781680831269
  • Pages : 232 pages

Download or read book Quantum Proofs written by Thomas Vidick and published by Foundations and Trends (R) in Theoretical Computer Science. This book was released on 2016-03-30 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum Proofs provides an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, it discusses non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class QSZK, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*. Quantum Proofs is mainly intended for non-specialists having a basic background in complexity theory and quantum information. A typical reader may be a student or researcher in either area desiring to learn about the fundamentals of the (actively developing) theory of quantum interactive proofs.

Book Fifty Years of Mathematical Physics

Download or read book Fifty Years of Mathematical Physics written by Molin Ge and published by World Scientific Publishing Company. This book was released on 2016-02-16 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique volume summarizes with a historical perspective several of the major scientific achievements of Ludwig Faddeev, with a foreword by Nobel Laureate C N Yang. The volume that spans over fifty years of Faddeev's career begins where he started his own scientific research, in the subject of scattering theory and the three-body problem. It then continues to describe Faddeev's contributions to automorphic functions, followed by an extensive account of his many fundamental contributions to quantum field theory including his original article on ghosts with Popov. Faddeev's contributions to soliton theory and integrable models are then described, followed by a survey of his work on quantum groups. The final scientific section is devoted to Faddeev's contemporary research including articles on his long-term interest in constructing knotted solitons and understanding confinement. The volume concludes with his personal view on science and mathematical physics in particular.

Book Classical and Quantum Computation

Download or read book Classical and Quantum Computation written by Alexei Yu. Kitaev and published by American Mathematical Soc.. This book was released on 2002 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to a rapidly developing topic: the theory of quantum computing. Following the basics of classical theory of computation, the book provides an exposition of quantum computation theory. In concluding sections, related topics, including parallel quantum computation, are discussed.

Book Control  Gates  and Error Suppression with Hamiltonians in Quantum Computation

Download or read book Control Gates and Error Suppression with Hamiltonians in Quantum Computation written by Adam Darryl Bookatz and published by . This book was released on 2016 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis we are primarily interested in studying how to suppress errors, perform simulation, and implement logic gates in quantum computation within the context of using Hamiltonian controls. We also study the complexity class QMA-complete. We first investigate a method (introduced by Jordan, Farhi, and Shor) for suppressing environmentally induced errors in Hamiltonian-based quantum computation, involving encoding the system with a quantum error-detecting code and enforcing energy penalties against leaving the codespace. We prove that this method does work in principle: in the limit of infinitely large penalties, local errors are completely suppressed. We further derive bounds for the finite-penalty case and present numerical simulations suggesting that the method achieves even greater protection than these bounds indicate. We next consider the task of Hamiltonian simulation, i.e. effectively changing a system Hamiltonian to some other desired Hamiltonian by applying external time-dependent controls. We propose protocols for this task that rely solely on realistic bounded-strength control Hamiltonians. For systems coupled to an uncontrollable environment, our approach may be used to perform simulation while simultaneously suppressing unwanted decoherence. We also consider the scenario of removing unwanted couplings in many-body quantum systems obeying local system Hamiltonians and local environmental interactions. We present protocols for efficiently switching off the Hamiltonian of a system, i.e. simulating the zero Hamiltonian, using bounded-strength controls. To this end, we introduce the combinatorial concept of balanced-cycle orthogonal arrays, show how to construct them from classical error-correcting codes, and show how to use them to decouple n-qudit l-local Hamiltonians using protocols of length at most O(l-1 log n). We then present a scheme for implementing high-fidelity quantum gates using a few interacting bosons obeying a Bose-Hubbard Hamiltonian on a line. We find high-fidelity logic operations for a gate set (including the CNOT gate) that is universal for quantum information processing. Lastly, we discuss the quantum complexity class QMA-complete, surveying all known such problems, and we introduce the "quantum non-expander" problem, proving that it is QMA-complete. A quantum expander is a type of rapidly-mixing quantum channel; we show that estimating its mixing time is a co-QMA-complete problem.

Book Quantum Computation

    Book Details:
  • Author : American Mathematical Society. Short Course
  • Publisher : American Mathematical Soc.
  • Release : 2002
  • ISBN : 0821820842
  • Pages : 377 pages

Download or read book Quantum Computation written by American Mathematical Society. Short Course and published by American Mathematical Soc.. This book was released on 2002 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents written versions of the eight lectures given during the AMS Short Course held at the Joint Mathematics Meetings in Washington, D.C. The objective of this course was to share with the scientific community the many exciting mathematical challenges arising from the new field of quantum computation and quantum information science. The course was geared toward demonstrating the great breadth and depth of this mathematically rich research field. Interrelationships withexisting mathematical research areas were emphasized as much as possible. Moreover, the course was designed so that participants with little background in quantum mechanics would, upon completion, be prepared to begin reading the research literature on quantum computation and quantum informationscience. Based on audience feedback and questions, the written versions of the lectures have been greatly expanded, and supplementary material has been added. The book features an overview of relevant parts of quantum mechanics with an introduction to quantum computation, including many potential quantum mechanical computing devices; introduction to quantum algorithms and quantum complexity theory; in-depth discussion on quantum error correcting codes and quantum cryptography; and finally,exploration into diverse connections between quantum computation and various areas of mathematics and physics.

Book Approximation  Randomization  and Combinatorial Optimization  Algorithms and Techniques

Download or read book Approximation Randomization and Combinatorial Optimization Algorithms and Techniques written by Josep Diaz and published by Springer. This book was released on 2006-08-29 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the joint refereed proceedings of the 9th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2006 and the 10th International Workshop on Randomization and Computation, RANDOM 2006. The book presents 44 carefully reviewed and revised full papers. Among the topics covered are design and analysis of approximation algorithms, hardness of approximation problems, small spaces and data streaming algorithms, embeddings and metric space methods, and more.

Book Approximability of Optimization Problems through Adiabatic Quantum Computation

Download or read book Approximability of Optimization Problems through Adiabatic Quantum Computation written by William Cruz-Santos and published by Springer Nature. This book was released on 2022-05-31 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is large enough, then the system remains close to its ground state. An AQC algorithm uses the adiabatic theorem to approximate the ground state of the final Hamiltonian that corresponds to the solution of the given optimization problem. In this book, we investigate the computational simulation of AQC algorithms applied to the MAX-SAT problem. A symbolic analysis of the AQC solution is given in order to understand the involved computational complexity of AQC algorithms. This approach can be extended to other combinatorial optimization problems and can be used for the classical simulation of an AQC algorithm where a Hamiltonian problem is constructed. This construction requires the computation of a sparse matrix of dimension 2n × 2n, by means of tensor products, where n is the dimension of the quantum system. Also, a general scheme to design AQC algorithms is proposed, based on a natural correspondence between optimization Boolean variables and quantum bits. Combinatorial graph problems are in correspondence with pseudo-Boolean maps that are reduced in polynomial time to quadratic maps. Finally, the relation among NP-hard problems is investigated, as well as its logical representability, and is applied to the design of AQC algorithms. It is shown that every monadic second-order logic (MSOL) expression has associated pseudo-Boolean maps that can be obtained by expanding the given expression, and also can be reduced to quadratic forms. Table of Contents: Preface / Acknowledgments / Introduction / Approximability of NP-hard Problems / Adiabatic Quantum Computing / Efficient Hamiltonian Construction / AQC for Pseudo-Boolean Optimization / A General Strategy to Solve NP-Hard Problems / Conclusions / Bibliography / Authors' Biographies

Book Adiabatic Quantum Computation and Quantum Annealing

Download or read book Adiabatic Quantum Computation and Quantum Annealing written by Catherine C. McGeoch and published by Springer Nature. This book was released on 2022-06-01 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adiabatic quantum computation (AQC) is an alternative to the better-known gate model of quantum computation. The two models are polynomially equivalent, but otherwise quite dissimilar: one property that distinguishes AQC from the gate model is its analog nature. Quantum annealing (QA) describes a type of heuristic search algorithm that can be implemented to run in the ``native instruction set'' of an AQC platform. D-Wave Systems Inc. manufactures {quantum annealing processor chips} that exploit quantum properties to realize QA computations in hardware. The chips form the centerpiece of a novel computing platform designed to solve NP-hard optimization problems. Starting with a 16-qubit prototype announced in 2007, the company has launched and sold increasingly larger models: the 128-qubit D-Wave One system was announced in 2010 and the 512-qubit D-Wave Two system arrived on the scene in 2013. A 1,000-qubit model is expected to be available in 2014. This monograph presents an introductory overview of this unusual and rapidly developing approach to computation. We start with a survey of basic principles of quantum computation and what is known about the AQC model and the QA algorithm paradigm. Next we review the D-Wave technology stack and discuss some challenges to building and using quantum computing systems at a commercial scale. The last chapter reviews some experimental efforts to understand the properties and capabilities of these unusual platforms. The discussion throughout is aimed at an audience of computer scientists with little background in quantum computation or in physics. Table of Contents: Acknowledgments / Introduction / Adiabatic Quantum Computation / Quantum Annealing / The D-Wave Platform / Computational Experience / Bibliography / Author's Biography

Book Classical and Quantum Information

Download or read book Classical and Quantum Information written by Dan C. Marinescu and published by Academic Press. This book was released on 2011-01-07 with total page 745 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new discipline, Quantum Information Science, has emerged in the last two decades of the twentieth century at the intersection of Physics, Mathematics, and Computer Science. Quantum Information Processing is an application of Quantum Information Science which covers the transformation, storage, and transmission of quantum information; it represents a revolutionary approach to information processing. Classical and Quantum Information covers topics in quantum computing, quantum information theory, and quantum error correction, three important areas of quantum information processing. Quantum information theory and quantum error correction build on the scope, concepts, methodology, and techniques developed in the context of their close relatives, classical information theory and classical error correcting codes. Presents recent results in quantum computing, quantum information theory, and quantum error correcting codes Covers both classical and quantum information theory and error correcting codes The last chapter of the book covers physical implementation of quantum information processing devices Covers the mathematical formalism and the concepts in Quantum Mechanics critical for understanding the properties and the transformations of quantum information

Book Quantum Computing

    Book Details:
  • Author : National Academies of Sciences, Engineering, and Medicine
  • Publisher : National Academies Press
  • Release : 2019-04-27
  • ISBN : 030947969X
  • Pages : 273 pages

Download or read book Quantum Computing written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-04-27 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.

Book Quantum Information and Computation for Chemistry  Volume 154

Download or read book Quantum Information and Computation for Chemistry Volume 154 written by Sabre Kais and published by John Wiley & Sons. This book was released on 2014-01-31 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines the intersection of quantum information and chemical physics The Advances in Chemical Physics series is dedicated to reviewing new and emerging topics as well as the latest developments in traditional areas of study in the field of chemical physics. Each volume features detailed comprehensive analyses coupled with individual points of view that integrate the many disciplines of science that are needed for a full understanding of chemical physics. This volume of the series explores the latest research findings, applications, and new research paths from the quantum information science community. It examines topics in quantum computation and quantum information that are related to or intersect with key topics in chemical physics. The reviews address both what chemistry can contribute to quantum information and what quantum information can contribute to the study of chemical systems, surveying both theoretical and experimental quantum information research within the field of chemical physics. With contributions from an international team of leading experts, Volume 154 offers seventeen detailed reviews, including: Introduction to quantum information and computation for chemistry Quantum computing approach to non-relativistic and relativistic molecular energy calculations Quantum algorithms for continuous problems and their applications Photonic toolbox for quantum simulation Vibrational energy and information transfer through molecular chains Tensor networks for entanglement evolution Reviews published in Advances in Chemical Physics are typically longer than those published in journals, providing the space needed for readers to fully grasp the topic: the fundamentals as well as the latest discoveries, applications, and emerging avenues of research. Extensive cross-referencing enables readers to explore the primary research studies underlying each topic.

Book Topological Quantum Computation

Download or read book Topological Quantum Computation written by Zhenghan Wang and published by American Mathematical Soc.. This book was released on 2010 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological quantum computation is a computational paradigm based on topological phases of matter, which are governed by topological quantum field theories. In this approach, information is stored in the lowest energy states of many-anyon systems and processed by braiding non-abelian anyons. The computational answer is accessed by bringing anyons together and observing the result. Besides its theoretical esthetic appeal, the practical merit of the topological approach lies in its error-minimizing hypothetical hardware: topological phases of matter are fault-avoiding or deaf to most local noises, and unitary gates are implemented with exponential accuracy. Experimental realizations are pursued in systems such as fractional quantum Hall liquids and topological insulators. This book expands on the author's CBMS lectures on knots and topological quantum computing and is intended as a primer for mathematically inclined graduate students. With an emphasis on introducing basic notions and current research, this book gives the first coherent account of the field, covering a wide range of topics: Temperley-Lieb-Jones theory, the quantum circuit model, ribbon fusion category theory, topological quantum field theory, anyon theory, additive approximation of the Jones polynomial, anyonic quantum computing models, and mathematical models of topological phases of matter.