EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Methods for Conservation Laws

Download or read book Numerical Methods for Conservation Laws written by LEVEQUE and published by Birkhäuser. This book was released on 2013-11-11 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.

Book Nonlinear  Time Domain  and Linearized  Time and Frequency Domain  Solutions to the Compressible Euler Equations in Conservation Law Form

Download or read book Nonlinear Time Domain and Linearized Time and Frequency Domain Solutions to the Compressible Euler Equations in Conservation Law Form written by National Aeronautics and Space Adm Nasa and published by . This book was released on 2018-10-23 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two linearized solvers (time and frequency domain) based on a high resolution numerical scheme are presented. The basic approach is to linearize the flux vector by expressing it as a sum of a mean and a perturbation. This allows the governing equations to be maintained in conservation law form. A key difference between the time and frequency domain computations is that the frequency domain computations require only one grid block irrespective of the interblade phase angle for which the flow is being computed. As a result of this and due to the fact that the governing equations for this case are steady, frequency domain computations are substantially faster than the corresponding time domain computations. The linearized equations are used to compute flows in turbomachinery blade rows (cascades) arising due to blade vibrations. Numerical solutions are compared to linear theory (where available) and to numerical solutions of the nonlinear Euler equations. Sreenivas, Kidambi and Whitfield, David L. Unspecified Center NAG3-767...

Book NASA Technical Memorandum

Download or read book NASA Technical Memorandum written by and published by . This book was released on 1994 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Solutions of the Euler Equations for Steady Flow Problems

Download or read book Numerical Solutions of the Euler Equations for Steady Flow Problems written by Albrecht Eberle and published by Vieweg+Teubner Verlag. This book was released on 2013-04-17 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: The last decade has seen a dramatic increase of our abilities to solve numerically the governing equations of fluid mechanics. In design aerodynamics the classical potential-flow methods have been complemented by higher modelling-level methods. Euler solvers, and for special purposes, already Navier-Stokes solvers are in use. The authors of this book have been working on the solution of the Euler equations for quite some time. While the first two of us have worked mainly on algorithmic problems, the third has been concerned off and on with modelling and application problems of Euler methods. When we started to write this book we decided to put our own work at the center of it. This was done because we thought, and we leave this to the reader to decide, that our work has attained over the years enough substance in order to justify a book. The problem which we soon faced, was that the field still is moving at a fast pace, for instance because hyper sonic computation problems became more and more important.

Book Numerical Methods for Conservation Laws

Download or read book Numerical Methods for Conservation Laws written by Randall J. LeVeque and published by Birkhauser. This book was released on 1990 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Methods for Fluid Dynamics

Download or read book Numerical Methods for Fluid Dynamics written by Dale R. Durran and published by Springer Science & Business Media. This book was released on 2010-09-14 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean

Book Fundamentals of Computational Fluid Dynamics

Download or read book Fundamentals of Computational Fluid Dynamics written by H. Lomax and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: The chosen semi-discrete approach of a reduction procedure of partial differential equations to ordinary differential equations and finally to difference equations gives the book its distinctiveness and provides a sound basis for a deep understanding of the fundamental concepts in computational fluid dynamics.

Book 93 2930   93 2964

Download or read book 93 2930 93 2964 written by and published by . This book was released on 1993 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Schemes for Conservation Laws

Download or read book Numerical Schemes for Conservation Laws written by Dietmar Kröner and published by John Wiley & Sons. This book was released on 1997 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Systems of Conservation Laws

Download or read book Systems of Conservation Laws written by Yuxi Zheng and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work should serve as an introductory text for graduate students and researchers working in the important area of partial differential equations with a focus on problems involving conservation laws. The only requisite for the reader is a knowledge of the elementary theory of partial differential equations. Key features of this work include: * broad range of topics, from the classical treatment to recent results, dealing with solutions to 2D compressible Euler equations * good review of basic concepts (1-D Riemann problems) * concrete solutions presented, with many examples, over 100 illustrations, open problems, and numerical schemes * numerous exercises, comprehensive bibliography and index * appeal to a wide audience of applied mathematicians, graduate students, physicists, and engineers Written in a clear, accessible style, the book emphasizes more recent results that will prepare readers to meet modern challenges in the subject, that is, to carry out theoretical, numerical, and asymptotical analysis.

Book Masters Abstracts International

Download or read book Masters Abstracts International written by and published by . This book was released on 1994 with total page 832 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book International Aerospace Abstracts

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1998 with total page 980 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Applied mechanics reviews

Download or read book Applied mechanics reviews written by and published by . This book was released on 1948 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Convex Integration Applied to the Multi Dimensional Compressible Euler Equations

Download or read book Convex Integration Applied to the Multi Dimensional Compressible Euler Equations written by Simon Markfelder and published by Springer Nature. This book was released on 2021-10-20 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book applies the convex integration method to multi-dimensional compressible Euler equations in the barotropic case as well as the full system with temperature. The convex integration technique, originally developed in the context of differential inclusions, was applied in the groundbreaking work of De Lellis and Székelyhidi to the incompressible Euler equations, leading to infinitely many solutions. This theory was later refined to prove non-uniqueness of solutions of the compressible Euler system, too. These non-uniqueness results all use an ansatz which reduces the equations to a kind of incompressible system to which a slight modification of the incompressible theory can be applied. This book presents, for the first time, a generalization of the De Lellis–Székelyhidi approach to the setting of compressible Euler equations. The structure of this book is as follows: after providing an accessible introduction to the subject, including the essentials of hyperbolic conservation laws, the idea of convex integration in the compressible framework is developed. The main result proves that under a certain assumption there exist infinitely many solutions to an abstract initial boundary value problem for the Euler system. Next some applications of this theorem are discussed, in particular concerning the Riemann problem. Finally there is a survey of some related results. This self-contained book is suitable for both beginners in the field of hyperbolic conservation laws as well as for advanced readers who already know about convex integration in the incompressible framework.