Download or read book Handbook of Geometric Analysis written by Lizhen Ji and published by . This book was released on 2008 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Geometric Analysis combines differential equations with differential geometry. An important aspect of geometric analysis is to approach geometric problems by studying differential equations. Besides some known linear differential operators such as the Laplace operator, many differential equations arising from differential geometry are nonlinear. A particularly important example is the Monge-Amperè equation. Applications to geometric problems have also motivated new methods and techniques in differential equations. The field of geometric analysis is broad and has had many striking applications. This handbook of geometric analysis--the first of the two to be published in the ALM series--presents introductions and survey papers treating important topics in geometric analysis, with their applications to related fields. It can be used as a reference by graduate students and by researchers in related areas."--Back cover.
Download or read book Handbook of Geometric Analysis written by Lizhen Ji and published by . This book was released on 2008 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric Analysis combines differential equations and differential geometry. An important aspect is to solve geometric problems by studying differential equations. This handbook - the third to be published in the ALM series - provides introductions to and surveys of important topics in geometric analysis and their applications to related fields. It can be used as a reference by graduate students and researchers.
Download or read book Handbook of the Geometry of Banach Spaces written by and published by Elsevier. This book was released on 2001-08-15 with total page 1017 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook presents an overview of most aspects of modernBanach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banachspace theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.
Download or read book Handbook of Complex Analysis written by Reiner Kuhnau and published by Elsevier. This book was released on 2002-12-05 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric Function Theory is a central part of Complex Analysis (one complex variable). The Handbook of Complex Analysis - Geometric Function Theory deals with this field and its many ramifications and relations to other areas of mathematics and physics. The theory of conformal and quasiconformal mappings plays a central role in this Handbook, for example a priori-estimates for these mappings which arise from solving extremal problems, and constructive methods are considered. As a new field the theory of circle packings which goes back to P. Koebe is included. The Handbook should be useful for experts as well as for mathematicians working in other areas, as well as for physicists and engineers.· A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane)
Download or read book Handbook of Convex Geometry written by Bozzano G Luisa and published by Elsevier. This book was released on 2014-06-28 with total page 769 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Convex Geometry, Volume B offers a survey of convex geometry and its many ramifications and connections with other fields of mathematics, including convexity, lattices, crystallography, and convex functions. The selection first offers information on the geometry of numbers, lattice points, and packing and covering with convex sets. Discussions focus on packing in non-Euclidean spaces, problems in the Euclidean plane, general convex bodies, computational complexity of lattice point problem, centrally symmetric convex bodies, reduction theory, and lattices and the space of lattices. The text then examines finite packing and covering and tilings, including plane tilings, monohedral tilings, bin packing, and sausage problems. The manuscript takes a look at valuations and dissections, geometric crystallography, convexity and differential geometry, and convex functions. Topics include differentiability, inequalities, uniqueness theorems for convex hypersurfaces, mixed discriminants and mixed volumes, differential geometric characterization of convexity, reduction of quadratic forms, and finite groups of symmetry operations. The selection is a dependable source of data for mathematicians and researchers interested in convex geometry.
Download or read book Guide to 3D Vision Computation written by Kenichi Kanatani and published by Springer. This book was released on 2016-12-09 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classroom-tested and easy-to-understand textbook/reference describes the state of the art in 3D reconstruction from multiple images, taking into consideration all aspects of programming and implementation. Unlike other computer vision textbooks, this guide takes a unique approach in which the initial focus is on practical application and the procedures necessary to actually build a computer vision system. The theoretical background is then briefly explained afterwards, highlighting how one can quickly and simply obtain the desired result without knowing the derivation of the mathematical detail. Features: reviews the fundamental algorithms underlying computer vision; describes the latest techniques for 3D reconstruction from multiple images; summarizes the mathematical theory behind statistical error analysis for general geometric estimation problems; presents derivations at the end of each chapter, with solutions supplied at the end of the book; provides additional material at an associated website.
Download or read book Digital Geometry written by Reinhard Klette and published by Morgan Kaufmann. This book was released on 2004-08-06 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book on digital geometry by the leaders in the field.
Download or read book Handbook of Discrete and Computational Geometry written by Csaba D. Toth and published by CRC Press. This book was released on 2017-11-22 with total page 2354 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.
Download or read book Geometric Design of Roads Handbook written by Keith Wolhuter and published by CRC Press. This book was released on 2015-10-05 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the Art and Science of Geometric DesignThe Geometric Design of Roads Handbook covers the design of the visible elements of the road-its horizontal and vertical alignments, the cross-section, intersections, and interchanges. Good practice allows the smooth and safe flow of traffic as well as easy maintenance. Geometric design is covered in d
Download or read book Proof in Geometry written by A. I. Fetisov and published by Courier Corporation. This book was released on 2012-06-11 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: This single-volume compilation of 2 books explores the construction of geometric proofs. It offers useful criteria for determining correctness and presents examples of faulty proofs that illustrate common errors. 1963 editions.
Download or read book Lectures on the Geometry of Manifolds written by Liviu I. Nicolaescu and published by World Scientific. This book was released on 2007 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.The book's guiding philosophy is, in the words of Newton, that ?in learning the sciences examples are of more use than precepts?. We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue.While we present most of the local aspects of classical differential geometry, the book has a ?global and analytical bias?. We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincar duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-;Bonnet theorem.We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand Hlder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators.The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight.
Download or read book Handbook of Dynamical Systems written by B. Fiedler and published by Gulf Professional Publishing. This book was released on 2002-02-21 with total page 1099 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.
Download or read book Handbook of Geometric Computing written by Eduardo Bayro Corrochano and published by Springer Science & Business Media. This book was released on 2005-12-06 with total page 773 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many computer scientists, engineers, applied mathematicians, and physicists use geometry theory and geometric computing methods in the design of perception-action systems, intelligent autonomous systems, and man-machine interfaces. This handbook brings together the most recent advances in the application of geometric computing for building such systems, with contributions from leading experts in the important fields of neuroscience, neural networks, image processing, pattern recognition, computer vision, uncertainty in geometric computations, conformal computational geometry, computer graphics and visualization, medical imagery, geometry and robotics, and reaching and motion planning. For the first time, the various methods are presented in a comprehensive, unified manner. This handbook is highly recommended for postgraduate students and researchers working on applications such as automated learning; geometric and fuzzy reasoning; human-like artificial vision; tele-operation; space maneuvering; haptics; rescue robots; man-machine interfaces; tele-immersion; computer- and robotics-aided neurosurgery or orthopedics; the assembly and design of humanoids; and systems for metalevel reasoning.
Download or read book Function Theory of Several Complex Variables written by Steven George Krantz and published by American Mathematical Soc.. This book was released on 2001 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing integral formulas, the geometric theory of pseudoconvexity, estimates, partial differential equations, approximation theory, inner functions, invariant metrics, and mapping theory, this title is intended for the student with a background in real and complex variable theory, harmonic analysis, and differential equations.
Download or read book Tensors Differential Forms and Variational Principles written by David Lovelock and published by Courier Corporation. This book was released on 2012-04-20 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques. Includes problems.
Download or read book Handbook of Geometry and Topology of Singularities II written by José Luis Cisneros-Molina and published by Springer Nature. This book was released on 2021-11-01 with total page 581 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second volume of the Handbook of the Geometry and Topology of Singularities, a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of ten chapters which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory and related topics. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject, and in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
Download or read book Handbook of Analysis and Its Foundations written by Eric Schechter and published by Academic Press. This book was released on 1996-10-24 with total page 907 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Analysis and Its Foundations is a self-contained and unified handbook on mathematical analysis and its foundations. Intended as a self-study guide for advanced undergraduates and beginning graduatestudents in mathematics and a reference for more advanced mathematicians, this highly readable book provides broader coverage than competing texts in the area. Handbook of Analysis and Its Foundations provides an introduction to a wide range of topics, including: algebra; topology; normed spaces; integration theory; topological vector spaces; and differential equations. The author effectively demonstrates the relationships between these topics and includes a few chapters on set theory and logic to explain the lack of examples for classical pathological objects whose existence proofs are not constructive. More complete than any other book on the subject, students will find this to be an invaluable handbook. Covers some hard-to-find results including: Bessagas and Meyers converses of the Contraction Fixed Point Theorem Redefinition of subnets by Aarnes and Andenaes Ghermans characterization of topological convergences Neumanns nonlinear Closed Graph Theorem van Maarens geometry-free version of Sperners Lemma Includes a few advanced topics in functional analysis Features all areas of the foundations of analysis except geometry Combines material usually found in many different sources, making this unified treatment more convenient for the user Has its own webpage: http://math.vanderbilt.edu/