EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Growth and Characterization of ZnO for the Front Contact of Cu In  Ga Se2 Solar Cells Using Reactive Sputtering Techniques

Download or read book Growth and Characterization of ZnO for the Front Contact of Cu In Ga Se2 Solar Cells Using Reactive Sputtering Techniques written by Rita Bhatt and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: ABSTRACT: ZnO window layers for CIGS solar cells are grown with a DC sputtering technique instead of a conventional RF sputtering technique. Transparent window layers and buffer layers are sputtered from the Zn target in the presence of Oxygen. The window layer is doped with Aluminum in order to achieve high electrical conductivity and thermal stability. The effect of different sputtering parameters on the electrical and optical properties of the films is elaborately studied. Sets of annealing experiments are also performed. Combinations of different deposition parameters are examined to design the optimum fabrication conditions. We are able to deposit 85% transparent, Al doped ZnO films having 002-axis orientation and 4e-4 ohm-cm resistivity, which is successfully, used on CIGS solar cells. Resistivity of undoped ZnO buffer layers is varied form 10-2 ohm-cm to unmeasurable by varying the sputtering parameters. The performance of a reactively sputtered window layer and a buffer layer have matched the performance of the RF sputtered ZnO on CIGS solar cells. There has been considerable effort to eliminate Chemical Bath Deposition of the CdS buffer layer from CIS solar cell fabrication. The performance of an undoped DC sputtered ZnO layer is examined on Cd free CIGS solar cells. The ZnO buffer layer is directly sputtered on an underlying CIGS material. The performance of Cd free solar cells is highly susceptible to the presence of Oxygen in the sputtering ambient of the buffer layer deposition [6]. As Oxygen is a growth component in reactive sputtering, the growth mechanisms of the DC-sputtered buffer layer are studied to improve the understanding. The performance of all reactively sputtered ZnO devices matched the values reported in the literature and the results for DC sputtered ZnO on Cd-free solar cells were encouraging.

Book Nanoelectronics and Materials Development

Download or read book Nanoelectronics and Materials Development written by Abhijit Kar and published by BoD – Books on Demand. This book was released on 2016-07-27 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: The current edited book presents some of the most advanced research findings in the field of nanotechnology and its application in materials development in a very concise form. The main focus of the book is dragged toward those materials where electronic properties are manipulated for development of advanced materials. We have discussed about the extensive usage of nanotechnology and its impact on various facets of the chip-making practice from materials to devices such as basic memory, quantum dots, nanotubes, nanowires, graphene-like 2D materials, and CIGS thin-film solar cells as energy-harvesting devices. Researchers as well as students can gain valuable insights into the different processing of nanomaterials, characterization procedures of the materials in nanoscale, and their different functional properties and applications.

Book New Deposition Process of Cu In  Ga Se2 Thin Films for Solar Cell Applications

Download or read book New Deposition Process of Cu In Ga Se2 Thin Films for Solar Cell Applications written by Himal Khatri and published by . This book was released on 2009 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molybdenum (Mo) is currently the most common material used for Cu(In, Ga)Se2 solar cell back contacts. The first objective of this study is to utilize in-situ and ex-situ characterization techniques to investigate the growth, as well as the physical and chemical properties, of Mo thin films deposited by RF magnetron sputtering onto soda-lime glass (SLG) substrates. The effects of the deposition pressure on the nucleation and growth mechanisms that ultimately influence morphology and grain structure have been studied. Correspondence between real time spectroscopic ellipsometry (RTSE), X-ray diffraction (XRD), atomic force microscopy (AFM), and four-point probe resistivity measurements indicate that increasing deposition pressure leads to smaller average grain sizes and higher oxygen content in the Mo thin films. Changes of the material properties were also evaluated by changing RF power. It is observed that higher RF power, results in higher conductivity films. The second and overall objective of this work is to focus on the deposition and characterization of the Cu(In, Ga)Se2 absorber layer using the hybrid co-sputtering and evaporation process, which has potential for commercial PV. Solar cells were completed with a range of elemental compositions in the absorber layer, keeping a constant profile of Ga and varying Cu concentrations. The slightly Cu deficient Cu(In, Ga)Se2 films of band gap ~1.15 eV fabricated by this process consist of a single chalcopyrite phase and device efficiencies up to 12.4% were achieved for the composition ratios (x, y) = (0.30, 0.88). Correspondence between energy dispersive X-ray spectroscopy (EDS), X-ray diffraction, transmission and reflection (T & R), four-point probe resistivity, and current density-voltage (J-V) measurements indicate that increased Cu concentration leads to the incorporation of a secondary phase Cu2-xSe compound in the Cu(In, Ga)Se2 films, which is detrimental to cell performance. The third objective of this work is to evaluate the Cu2-xSe material properties by employing in-situ RTSE, as well as ex-situ SE and various other characterization techniques. SE revealed that the dielectric function spectra of Cu2-xSe evolve with temperature, providing insights into the evolution of transport properties and critical point structures. At room temperature, semi-metallic behavior of Cu2-xSe thin films was revealed by SE and Hall Effect measurements. These characteristics serve as key inputs for optical modeling of complex layer structures of Cu(In, Ga)Se2 films grown by 2- and 3-step processes.

Book Synthesis of Zinc Oxide by Sol   Gel Method for Photoelectrochemical Cells

Download or read book Synthesis of Zinc Oxide by Sol Gel Method for Photoelectrochemical Cells written by Siti Salwa Alias and published by Springer Science & Business Media. This book was released on 2013-11-20 with total page 59 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the study of synthesized ZnO powder using Zn(CH3COO)2∙2H2O precursor, methanol (as solvent), and sodium hydroxide (NaOH) to vary the pH. The successfully synthesized ZnO powder from the sol-gel centrifugation and sol-gel storage methods were characterized and investigated by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, UV–visible spectroscopy, and photoluminescence test to compare the properties of the nanoparticles. The best characteristic of the ZnO powder from both methods was observed when the powders were coated on an ITO glass to fabricate a PEC. The current density–voltage performances of both PECs were investigated under luminescent and dark conditions.

Book Optimization and Characterization of Transparent Oxide Layers for CIGS Solar Cells Fabrication

Download or read book Optimization and Characterization of Transparent Oxide Layers for CIGS Solar Cells Fabrication written by Qiudi Liu and published by . This book was released on 2007 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, we studied the structural, electrical, and optical properties of three different transparent oxides compounds in their thin film forms. These three compounds were aluminum doped zinc oxide (ZnO:Al), indium tin oxide (ITO) and intrinsic zinc oxide (ZnO). These films are a critical part of Cu(In,Ga)Se2 solar cells, as they play the role of the front contact collecting the photo-generated carriers while letting the photons penetrate into the active semiconductor layers. The films were deposited by radio frequency (r.f.) magnetron sputtering on soda lime glass. We investigated the change of the thin film properties in terms of the main deposition parameters: deposition pressure, substrate temperature, and target r.f. power. Similar trends were found for ZnO:Al and ITO, which were correlated with results from the literature. The optical band gap and the conductivity tend to decrease for increased deposition pressure, while they increase for increased substrate temperature or target power. The crystallinity and the surface roughness tend to increase for an increase of all three parameters, even if some parabolic shapes are obtained for some of the properties. For the ZnO films, the optical band gap and the conductivity do not change with the deposition pressure, substrate temperature or target power, while the crystallinity and the surface roughness tend to increase. These results were correlated with references from other research group

Book Electrical   Electronics Abstracts

Download or read book Electrical Electronics Abstracts written by and published by . This book was released on 1997 with total page 1860 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Coherent Optical Analysis of the ZnO CdS Cu In Ga Se 1tn2 Thin Film Solar Cell

Download or read book Coherent Optical Analysis of the ZnO CdS Cu In Ga Se 1tn2 Thin Film Solar Cell written by Kay Orgassa and published by . This book was released on 2004 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Growth and Characterization of Zinc Oxide  ZnO  Nanostructures for Photovotaic Applications

Download or read book Growth and Characterization of Zinc Oxide ZnO Nanostructures for Photovotaic Applications written by Basma El Zein and published by . This book was released on 2012 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: We identified that the growth parameters are vital to control the crystallinity, morphology and the defect levels in the synthesized ZnO nanowires. SEM, XRD, TEM, HRTEM analysis show that the nanostructures are highly crystalline and are vertically oriented. We also report the in-situ growth of PbS nanoparticles without linker on the surface of well -oriented ZnO NWs by (SILAR) technique. The PbS Nanoparticles are packed tightly on the surface of the ZnO Nanowires with different sizes and densities, without insulating nature organic ligands, which might affect both the electronic structure at the interface and the electron - transfer rate. The SEM, TEM, HRTEM, PL and XRD analysis, confirm the attachment of the spherical shape polycrystalline PbS nanoparticles. We propose at the end of the thesis the p-PbS /n-ZnO hetero-junction with its future applications in solar cells.

Book Energy Information Abstracts

Download or read book Energy Information Abstracts written by and published by . This book was released on 1989 with total page 1216 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Zinc Oxide   A Material for Micro  and Optoelectronic Applications

Download or read book Zinc Oxide A Material for Micro and Optoelectronic Applications written by Norbert H. Nickel and published by Springer. This book was released on 2005-08-16 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, a significant effort has been devoted to the investigation of ZnO as a suitable semiconductor for UV light-emitting diodes, lasers, and detectors and hetero-substrates for GaN. Research is driven not only by the technological requirements of state-of-the-art applications but also by the lack of a fundamental understanding of growth processes, the role of intrinsic defects and dopants, and the properties of hydrogen. The NATO Advanced Research Workshop on “Zinc oxide as a material for micro- and optoelectronic applications”, held from June 23 to June 25 2004 in St. Petersburg, Russia, was organized accordingly and started with the growth of ZnO. A variety of growth methods for bulk and layer growth were discussed. These techniques comprised growth methods such as closed space vapor transport (CSVT), metal-organic chemical vapor deposition, reactive ion sputtering, and pulsed laser deposition. From a structural point of view using these growth techniques ZnO can be fabricated ranging from single crystalline bulk material to polycrystalline ZnO and nanowhiskers. A major aspect of the ZnO growth is doping. n-type doping is relatively easy to accomplish with elements such al Al or Ga. At room temperature single crystal ZnO exhibits a resistivity of about 0. 3 -cm, an electron mobility of 2 17 -3 225 cm /Vs, and a carrier concentration of 10 cm . In n-type ZnO two shallow donors are observable with activation energies of 30 – 40 meV and 60 – 70 meV.

Book Photovoltaic Energy Conversion

Download or read book Photovoltaic Energy Conversion written by Kosuke Kurokawa and published by . This book was released on 2003 with total page 2930 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2007 with total page 924 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Index to IEEE Publications

Download or read book Index to IEEE Publications written by Institute of Electrical and Electronics Engineers and published by . This book was released on 1996 with total page 1292 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Chalcogenide Photovoltaics

Download or read book Chalcogenide Photovoltaics written by Roland Scheer and published by John Wiley & Sons. This book was released on 2011-03-31 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first comprehensive description of the most important material properties and device aspects closes the gap between general books on solar cells and journal articles on chalcogenide-based photovoltaics. Written by two very renowned authors with years of practical experience in the field, the book covers II-VI and I-III-VI2 materials as well as energy conversion at heterojunctions. It also discusses the latest semiconductor heterojunction models and presents modern analysis concepts. Thin film technology is explained with an emphasis on current and future techniques for mass production, and the book closes with a compendium of failure analysis in photovoltaic thin film modules. With its overview of the semiconductor physics and technology needed, this practical book is ideal for students, researchers, and manufacturers, as well as for the growing number of engineers and researchers working in companies and institutes on chalcogenide photovoltaics.

Book Electrical Characterization of ZnO thin films grown by molecular beam epitaxy

Download or read book Electrical Characterization of ZnO thin films grown by molecular beam epitaxy written by Vladimir Petukhov and published by Cuvillier Verlag. This book was released on 2012-04-25 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the electronic and optoelectronic device realization a precise control of the electrical properties in the utilized material is a very important issue. Doping profiles in realized p-njunctions influence the functionality of the devices. The morphological and crystal properties of a device material directly influence the electrical ones. Dislocations present in a region of p-n-junctions can short circuit them leading to malfunctions. Too rough surfaces during epitaxial growth could lead to inhomogeneities in a single or multiple quantum wells and superlattices. The main goal of the present work was to provide the basis for a reliable p-type doping of ZnO grown by molecular beam epitaxy. Firstly, the well established heteroepitaxial growth on c-sapphire substrates has been employed. Based on the theoretical and experimental works, suggesting nitrogen to be the impurity that builds the most shallow acceptor level in ZnO comparing to other group-V elements, it has been implied as a dopant. To generate reactive nitrogen atoms an rf-plasma source has been utilized in the MBE process. The resulting samples have been characterized by such methods as AFM, XRD, TEM, PL spectroscopy, temperature domain Hall measurements (TDHM) and ECV-profiling. First results of TDHM have shown that even in undoped samples the temperature dependencies of the electron mobility and carrier concentration have regions which are difficult to interpret. It is necessary to fit them with theoretical curves in order to extract the correct values. This task has proven to be very difficult. The complicated character of the dependencies has been explained in terms of the multilayer conduction model dividing a layer in thin interfacial region with mobility and carrier concentration μ1 and n1 respectivly and bulk region with a higher mobility μ2 and lower carrier concentration n2. The electrical transport in the bulk region has been modeled in terms of the general scattering theory in polar semiconductors. Such scattering mechanisms as scattering on polar-optical phonons, piezoelectric phonons, acoustic deformation potential, strain induced fields, dislocations, ionized and neutral impurities have been taken into account. Two cases have been considered to model transport in the interfacial region: 1) transport takes place in the conduction band of a highly doped degenerate semiconductor; 2) transport takes place in the impurity band formed by intermediate concentration of impurities and in conduction band in parallel. In the second case transport at the interface in conduction band has been neglected in the region of the low temperatures due to the impurities freeze-out and carrier concentration has been taken temperature independent like in the first case. To investigate experimentally the transport character in these two regions independently a mobility-spectrum analysis has been conducted. Theoretical results utilizing the two models have been compared with experimentally extracted mobility and carrier concentration in the interfacial region. It has been concluded that the concentration of donors in the layers is not high enough for the impurity band to merge with the conduction band and the second model is more consistent. The theoretically acquired donor concentration profiles have been compared with ECV-profiles. The agreement is very good. Simulations have revealed a shallow donor state with the ionization energy of approximately 45 meV . In the literature, this donor state in ZnO is attributed to hydrogen. However, due to the high diffusion mobility of hydrogen in ZnO, an annealing process would obviously decrease the carrier concentration in the samples which has not been the case. It has been suggested that the main donor centers are the electrically active crystal point defects generated by dislocations. Layers doped with nitrogen have been grown at very low temperatures (≈ 200°C) and at temperatures ranging from 400°C to 500°C, which are optimal for the epitaxial growth of ZnO. The samples grown at low temperatures are single crystalline with mosaic structure. In both cases, the introduction of the dopant increased the carrier concentration. This has been accounted for a bad crystal quality resulting in the inhomogeneous incorporation of nitrogen and for high background donor concentration due to the high dislocations densities. Additionally, the incorporation of acceptor centers shifts the Fermi-level increasing the formation probability of the compensating point defects. The analysis of TDHM showed an inconsistency of the one donor level model in the case of nitrogen doped samples. This fact and the decrease in the carrier concentration after annealing at 800°C for 30 minutes in ambient air can be explained by nitrogen forming donor-like defect complexes. In an attempt to improve the crystal quality of the heteroepitaxial layers, 15 periods of a ZnO/Zn0.6Mg0.4O superlattice structure have been inserted between the conventional double HT-MgO/LT-ZnO buffer and a main HT-ZnO layer. TDHM has revealed a very high mobility close to the values measured in a bulk ZnO for the temperature range of 20 - 300 K. However, TEM investigations of the samples have not indicated any decrease in the dislocation density comparing with the similar samples without a superlattice. Such a high mobility has been attributed to an electron transport in the superlattice structure. Heteroepitaxial growth of high quality ZnO-layers has proven to be challenging leaving the homoepitaxial growth as the only possibility to obtain the epitaxial layers with the best structural and electrical properties. The hydrothermally grown bulk ZnO substrates from two supplying companies, CrysTec and TokyoDenpa, have been employed for homoepitaxy. The substrates from CrysTec have not been epi-ready. Although AFM images reveal very flat surface, this has been damaged by the process of the chemomechanical polishing. This damaged layer must be removed. This has been achieved by the thermal annealing for 3 hours at 1050°C in ambient air. The thermally treated surfaces resulted in atomically flat terraces. XRD measurements have indicated an improvement of the crystal quality after annealing. The resistivity of the bulk substrates decreased after the thermal treatment due to out-diffusion of the compensating Li atoms letting Al, Ga and In atoms to contribute to conduction. After the longer annealing processes the etch-pits have been discovered on O-polar faces. The same features could be achieved by the chemical etching in a nitric acid on Zn-polar faces. The density of the threading dislocations on both polar faces for both types of substrates calculated by the etch-pit density investigation is about 105 1/cm2. Further the thermally treated substrates with atomically flat terraces have been utilized for homoepitaxy. The differences in growth kinetics during the molecular beam epitaxy on such substrates with the improved surface quality depending on their polarity have been investigated by RHEED measurements. The growth on a Zn-polar face has a 3D-character independently on a supplier. Morphologies of the resulting O- and Zn-polar layers have shown to be different. This has been explained by the presence of dangling bonds on Opolar face and thus, shorter diffusion time of the impinging Zn atoms on the surface. XRD and TEM measurements have shown a perfect crystal quality of the overgrown layers. The PL spectra of homoepitaxial layers are governed by the donor impurities diffused from the substrates. Considering the SIMS measurements of homoepitaxial layers found in the literature it has been concluded that the diffusion of donors in the layers grown on Zn-polar faces takes less effect then for the O-polar films. This conclusion has enforced the utilization of Zn-polar substrates supplied by CrysTec for the experiments with nitrogen doping of ZnO because of their affordable price. The electrical properties measured by ECV-profiling in series of homoepitaxial layers with varied growth parameters have shown an increase of the carrier concentration with the nitrogen incorporation. In addition, it has also been shown that the resulting electrical properties near the interface are governed mostly by the initial properties of the substrates. With increasing thickness of the layers carrier concentration saturated to the values of around 1016 1/cm3. The recent successful realization of the p-type MgZnO layers on TokyoDenpa substrates by researchers from Japan suggests switching to the p-type doped alloys because the above discussed results indicate that p-type doping with nitrogen of a pure ZnO is very difficult or even impossible. This is due to a rather fundamental reason: the formation of the compensating donor centers with the incorporation of acceptor atoms. As the first step in the future works, it is obvious to try to reproduce the results of the ZnMgO p-type doping with nitrogen employing growth on ZnO substrates.