EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Electric Vehicle Battery Systems

Download or read book Electric Vehicle Battery Systems written by Sandeep Dhameja and published by Elsevier. This book was released on 2001-10-30 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electric Vehicle Battery Systems provides operational theory and design guidance for engineers and technicians working to design and develop efficient electric vehicle (EV) power sources. As Zero Emission Vehicles become a requirement in more areas of the world, the technology required to design and maintain their complex battery systems is needed not only by the vehicle designers, but by those who will provide recharging and maintenance services, as well as utility infrastructure providers. Includes fuel cell and hybrid vehicle applications.Written with cost and efficiency foremost in mind, Electric Vehicle Battery Systems offers essential details on failure mode analysis of VRLA, NiMH battery systems, the fast-charging of electric vehicle battery systems based on Pb-acid, NiMH, Li-ion technologies, and much more. Key coverage includes issues that can affect electric vehicle performance, such as total battery capacity, battery charging and discharging, and battery temperature constraints. The author also explores electric vehicle performance, battery testing (15 core performance tests provided), lithium-ion batteries, fuel cells and hybrid vehicles. In order to make a practical electric vehicle, a thorough understanding of the operation of a set of batteries in a pack is necessary. Expertly written and researched, Electric Vehicle Battery Systems will prove invaluable to automotive engineers, electronics and integrated circuit design engineers, and anyone whose interests involve electric vehicles and battery systems. * Addresses cost and efficiency as key elements in the design process* Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies* Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies

Book Thermal Management of Electric Vehicle Battery Systems

Download or read book Thermal Management of Electric Vehicle Battery Systems written by Ibrahim Din¿er and published by John Wiley & Sons. This book was released on 2017-03-20 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal Management of Electric Vehicle Battery Systems provides a thorough examination of various conventional and cutting edge electric vehicle (EV) battery thermal management systems (including phase change material) that are currently used in the industry as well as being proposed for future EV batteries. It covers how to select the right thermal management design, configuration and parameters for the users’ battery chemistry, applications and operating conditions, and provides guidance on the setup, instrumentation and operation of their thermal management systems (TMS) in the most efficient and effective manner. This book provides the reader with the necessary information to develop a capable battery TMS that can keep the cells operating within the ideal operating temperature ranges and uniformities, while minimizing the associated energy consumption, cost and environmental impact. The procedures used are explained step-by-step, and generic and widely used parameters are utilized as much as possible to enable the reader to incorporate the conducted analyses to the systems they are working on. Also included are comprehensive thermodynamic modelling and analyses of TMSs as well as databanks of component costs and environmental impacts, which can be useful for providing new ideas on improving vehicle designs. Key features: Discusses traditional and cutting edge technologies as well as research directions Covers thermal management systems and their selection for different vehicles and applications Includes case studies and practical examples from the industry Covers thermodynamic analyses and assessment methods, including those based on energy and exergy, as well as exergoeconomic, exergoenvironmental and enviroeconomic techniques Accompanied by a website hosting codes, models, and economic and environmental databases as well as various related information Thermal Management of Electric Vehicle Battery Systems is a unique book on electric vehicle thermal management systems for researchers and practitioners in industry, and is also a suitable textbook for senior-level undergraduate and graduate courses.

Book Battery Management System for Future Electric Vehicles

Download or read book Battery Management System for Future Electric Vehicles written by Dirk Söffker and published by MDPI. This book was released on 2020-11-09 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: The future of electric vehicles relies nearly entirely on the design, monitoring, and control of the vehicle battery and its associated systems. Along with an initial optimal design of the cell/pack-level structure, the runtime performance of the battery needs to be continuously monitored and optimized for a safe and reliable operation and prolonged life. Improved charging techniques need to be developed to protect and preserve the battery. The scope of this Special Issue is to address all the above issues by promoting innovative design concepts, modeling and state estimation techniques, charging/discharging management, and hybridization with other storage components.

Book Battery Management Systems of Electric and Hybrid Electric Vehicles

Download or read book Battery Management Systems of Electric and Hybrid Electric Vehicles written by Nicolae Tudoroiu and published by MDPI. This book was released on 2021-08-30 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topics of interest in this book include significant challenges in the BMS design of EV/HEV. The equivalent models developed for several types of integrated Li-ion batteries consider the environmental temperature and ageing effects. Different current profiles for testing the robustness of the Kalman filter type estimators of the battery state of charge are used in this book. Additionally, the BMS can integrate a real-time model-based sensor Fault Detection and Isolation (FDI) scheme for a Li-ion cell undergoing degradation, which uses the recursive least squares (RLS) method to estimate the equivalent circuit model (ECM) parameters. This book will fully meet the demands of a large community of readers and specialists working in the field due to its attractiveness and scientific content with a great openness to the side of practical applicability. This covers various interesting aspects, especially related to the characterization of commercial batteries, diagnosis and optimization of their performance, experimental testing and statistical analysis, thermal modelling, and implementation of the most suitable Kalman filter type estimators of high accuracy to estimate the state of charge

Book Advanced Battery Management Technologies for Electric Vehicles

Download or read book Advanced Battery Management Technologies for Electric Vehicles written by Rui Xiong and published by John Wiley & Sons. This book was released on 2019-02-26 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive examination of advanced battery management technologies and practices in modern electric vehicles Policies surrounding energy sustainability and environmental impact have become of increasing interest to governments, industries, and the general public worldwide. Policies embracing strategies that reduce fossil fuel dependency and greenhouse gas emissions have driven the widespread adoption of electric vehicles (EVs), including hybrid electric vehicles (HEVs), pure electric vehicles (PEVs) and plug-in electric vehicles (PHEVs). Battery management systems (BMSs) are crucial components of such vehicles, protecting a battery system from operating outside its Safe Operating Area (SOA), monitoring its working conditions, calculating and reporting its states, and charging and balancing the battery system. Advanced Battery Management Technologies for Electric Vehicles is a compilation of contemporary model-based state estimation methods and battery charging and balancing techniques, providing readers with practical knowledge of both fundamental concepts and practical applications. This timely and highly-relevant text covers essential areas such as battery modeling and battery state of charge, energy, health and power estimation methods. Clear and accurate background information, relevant case studies, chapter summaries, and reference citations help readers to fully comprehend each topic in a practical context. Offers up-to-date coverage of modern battery management technology and practice Provides case studies of real-world engineering applications Guides readers from electric vehicle fundamentals to advanced battery management topics Includes chapter introductions and summaries, case studies, and color charts, graphs, and illustrations Suitable for advanced undergraduate and graduate coursework, Advanced Battery Management Technologies for Electric Vehicles is equally valuable as a reference for professional researchers and engineers.

Book Behaviour of Lithium Ion Batteries in Electric Vehicles

Download or read book Behaviour of Lithium Ion Batteries in Electric Vehicles written by Gianfranco Pistoia and published by Springer. This book was released on 2018-02-10 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys state-of-the-art research on and developments in lithium-ion batteries for hybrid and electric vehicles. It summarizes their features in terms of performance, cost, service life, management, charging facilities, and safety. Vehicle electrification is now commonly accepted as a means of reducing fossil-fuels consumption and air pollution. At present, every electric vehicle on the road is powered by a lithium-ion battery. Currently, batteries based on lithium-ion technology are ranked first in terms of performance, reliability and safety. Though other systems, e.g., metal-air, lithium-sulphur, solid state, and aluminium-ion, are now being investigated, the lithium-ion system is likely to dominate for at least the next decade – which is why several manufacturers, e.g., Toyota, Nissan and Tesla, are chiefly focusing on this technology. Providing comprehensive information on lithium-ion batteries, the book includes contributions by the world’s leading experts on Li-ion batteries and vehicles.

Book Advances in Battery Technologies for Electric Vehicles

Download or read book Advances in Battery Technologies for Electric Vehicles written by Bruno Scrosati and published by Woodhead Publishing. This book was released on 2015-05-25 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Battery Technologies for Electric Vehicles provides an in-depth look into the research being conducted on the development of more efficient batteries capable of long distance travel. The text contains an introductory section on the market for battery and hybrid electric vehicles, then thoroughly presents the latest on lithium-ion battery technology. Readers will find sections on battery pack design and management, a discussion of the infrastructure required for the creation of a battery powered transport network, and coverage of the issues involved with end-of-life management for these types of batteries. Provides an in-depth look into new research on the development of more efficient, long distance travel batteries Contains an introductory section on the market for battery and hybrid electric vehicles Discusses battery pack design and management and the issues involved with end-of-life management for these types of batteries

Book Battery Systems Engineering

Download or read book Battery Systems Engineering written by Christopher D. Rahn and published by John Wiley & Sons. This book was released on 2013-01-25 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original approach gives a useful overview for systems engineers in chemical, mechanical, electrical, or aerospace engineering who are interested in learning more about batteries and how to use them effectively. Chemists, material scientists, and mathematical modelers can also benefit from this book by learning how their expertise affects battery management. Approaches a topic which has experienced phenomenal growth in recent years Topics covered include: Electrochemistry; Governing Equations; Discretization Methods; System Response and Battery Management Systems Include tables, illustrations, photographs, graphs, worked examples, homework problems, and references, to thoroughly illustrate key material Ideal for engineers working in the mechanical, electrical, and chemical fields as well as graduate students in these areas A valuable resource for Scientists and Engineers working in the battery or electric vehicle industries, Graduate students in mechanical engineering, electrical engineering, chemical engineering.

Book Battery Management Algorithm for Electric Vehicles

Download or read book Battery Management Algorithm for Electric Vehicles written by Rui Xiong and published by Springer Nature. This book was released on 2019-09-23 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book systematically introduces readers to the core algorithms of battery management system (BMS) for electric vehicles. These algorithms cover most of the technical bottlenecks encountered in BMS applications, including battery system modeling, state of charge (SOC) and state of health (SOH) estimation, state of power (SOP) estimation, remaining useful life (RUL) prediction, heating at low temperature, and optimization of charging. The book not only presents these algorithms, but also discusses their background, as well as related experimental and hardware developments. The concise figures and program codes provided make the calculation process easy to follow and apply, while the results obtained are presented in a comparative way, allowing readers to intuitively grasp the characteristics of different algorithms. Given its scope, the book is intended for researchers, senior undergraduate and graduate students, as well as engineers in the fields of electric vehicles and energy storage.

Book Simulation of Battery Systems

Download or read book Simulation of Battery Systems written by Farschad Torabi and published by Academic Press. This book was released on 2019-11-06 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulation of Battery Systems: Fundamentals and Applications covers both the fundamental and technical aspects of battery systems. It is a solid reference on the simulation of battery dynamics based on fundamental governing equations of porous electrodes. Sections cover the fundamentals of electrochemistry and how to obtain electrochemical governing equations for porous electrodes, the governing equations and physical characteristics of lead-acid batteries, the physical characteristics of zinc-silver oxide batteries, experimental tests and parameters necessary for simulation and validation of battery dynamics, and an environmental impact and techno-economic assessment of battery systems for different applications, such as electric vehicles and battery energy storage. The book contains introductory information, with most chapters requiring a solid background in engineering or applied science. Battery industrial companies who want to improve their industrial batteries will also find this book useful. Includes carefully selected in-text problems, case studies and illustrative examples Features representative chapter-end problems, along with practical systems and applications Covers various numerical methods, including those based on CFD and optimization, also including free codes and databases

Book Battery Technology for Electric Vehicles

Download or read book Battery Technology for Electric Vehicles written by Albert N. Link and published by Routledge. This book was released on 2015-04-10 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electric drive vehicles (EDVs) are seen on American roads in increasing numbers. Related to this market trend and critical for it to increase are improvements in battery technology. Battery Technology for Electric Vehicles examines in detail at the research support from the U.S. Department of Energy (DOE) for the development of nickel-metal-hydride (NiMH) and lithium-ion (Li-ion) batteries used in EDVs. With public support comes accountability of the social outcomes associated with public investments. The book overviews DOE investments in advanced battery technology, documents the adoption of these batteries in EDVs on the road, and calculates the economic benefits associated with these improved technologies. It provides a detailed global evaluation of the net social benefits associated with DOEs investments, the results of the benefit-to-cost ratio of over 3.6-to-1, and the life-cycle approach that allows adopted EDVs to remain on the road over their expected future life, thus generating economic and environmental health benefits into the future.

Book Automotive Battery Technology

Download or read book Automotive Battery Technology written by Alexander Thaler and published by Springer Science & Business Media. This book was released on 2014-01-30 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.

Book Electric Vehicles and the Future of Energy Efficient Transportation

Download or read book Electric Vehicles and the Future of Energy Efficient Transportation written by Subramaniam, Umashankar and published by IGI Global. This book was released on 2021-04-16 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: The electric vehicle market has been gradually gaining prominence in the world due to the rise in pollution levels caused by traditional IC engine-based vehicles. The advantages of electric vehicles are multi-pronged in terms of cost, energy efficiency, and environmental impact. The running and maintenance cost are considerably less than traditional models. The harmful exhaust emissions are reduced, besides the greenhouse gas emissions, when the electric vehicle is supplied from a renewable energy source. However, apart from some Western nations, many developing and underdeveloped countries have yet to take up this initiative. This lack of enthusiasm has been primarily attributed to the capital investment required for charging infrastructure and the slow transition of energy generation from the fossil fuel to the renewable energy format. Currently, there are very few charging stations, and the construction of the same needs to be ramped up to supplement the growth of electric vehicles. Grid integration issues also crop up when the electric vehicle is used to either do supply addition to or draw power from the grid. These problems need to be fixed at all the levels to enhance the future of energy efficient transportation. Electric Vehicles and the Future of Energy Efficient Transportation explores the growth and adoption of electric vehicles for the purpose of sustainable transportation and presents a critical analysis in terms of the economics, technology, and environmental perspectives of electric vehicles. The chapters cover the benefits and limitations of electric vehicles, techno-economic feasibility of the technologies being developed, and the impact this has on society. Specific points of discussion include electric vehicle architecture, wireless power transfer, battery management, and renewable resources. This book is of interest for individuals in the automotive sector and allied industries, policymakers, practitioners, engineers, technicians, researchers, academicians, and students looking for updated information on the technology, economics, policy, and environmental aspects of electric vehicles.

Book Batteries for Electric Vehicles

Download or read book Batteries for Electric Vehicles written by Helena Berg and published by Cambridge University Press. This book was released on 2015-08-20 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fundamental guide teaches readers the basics of battery design for electric vehicles. Working through this book, you will understand how to optimise battery performance and functionality, whilst minimising costs and maximising durability. Beginning with the basic concepts of electrochemistry, the book moves on to describe implementation, control and management of batteries in real vehicles, with respect to the battery materials. It describes how to select cells and batteries with explanations of the advantages and disadvantages of different battery chemistries, enabling readers to put their knowledge into practice and make informed and successful design decisions, with a thorough understanding of the trade-offs involved. The first of its kind, and written by an industry expert with experience in academia, this is an ideal resource for both students and researchers in the fields of battery research and development as well as for professionals in the automotive industry extending their interest towards electric vehicles.

Book Vehicular Electric Power Systems

Download or read book Vehicular Electric Power Systems written by Ali Emadi and published by CRC Press. This book was released on 2003-12-12 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vehicular Electric Power Systems: Land, Sea, Air, and Space Vehicles acquaints professionals with trends and challenges in the development of more electric vehicles (MEVs) using detailed examples and comprehensive discussions of advanced MEV power system architectures, characteristics, and dynamics. The authors focus on real-world applications and highlight issues related to system stability as well as challenges faced during and after implementation. Probes innovations in the development of more electric vehicles for improved maintenance, support, endurance, safety, and cost-efficiency in automotive, aerospace, and marine vehicle engineering Heralding a new wave of advances in power system technology, Vehicular Electric Power Systems discusses: Different automotive power systems including conventional automobiles, more electric cars, heavy-duty vehicles, and electric and hybrid electric vehicles Electric and hybrid electric propulsion systems and control strategies Aerospace power systems including conventional and advanced aircraft, spacecraft, and the international space station Sea and undersea vehicles The modeling, real-time state estimation, and stability assessment of vehicular power systems Applications of fuel cells in various land, sea, air, and space vehicles Modeling techniques for energy storage devices including batteries, fuel cells, photovoltaic cells, and ultracapacitors Advanced power electronic converters and electric motor drives for vehicular applications Guidelines for the proper design of DC and AC distribution architectures

Book Artificial Intelligent Techniques for Electric and Hybrid Electric Vehicles

Download or read book Artificial Intelligent Techniques for Electric and Hybrid Electric Vehicles written by Chitra A. and published by John Wiley & Sons. This book was released on 2020-07-21 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electric vehicles are changing transportation dramatically and this unique book merges the many disciplines that contribute research to make EV possible, so the reader is informed about all the underlying science and technologies driving the change. An emission-free mobility system is the only way to save the world from the greenhouse effect and other ecological issues. This belief has led to a tremendous growth in the demand for electric vehicles (EV) and hybrid electric vehicles (HEV), which are predicted to have a promising future based on the goals fixed by the European Commission's Horizon 2020 program. This book brings together the research that has been carried out in the EV/HEV sector and the leading role of advanced optimization techniques with artificial intelligence (AI). This is achieved by compiling the findings of various studies in the electrical, electronics, computer, and mechanical domains for the EV/HEV system. In addition to acting as a hub for information on these research findings, the book also addresses the challenges in the EV/HEV sector and provides proven solutions that involve the most promising AI techniques. Since the commercialization of EVs/HEVs still remains a challenge in industries in terms of performance and cost, these are the two tradeoffs which need to be researched in order to arrive at an optimal solution. Therefore, this book focuses on the convergence of various technologies involved in EVs/HEVs. Since all countries will gradually shift from conventional internal combustion (IC) engine-based vehicles to EVs/HEVs in the near future, it also serves as a useful reliable resource for multidisciplinary researchers and industry teams.

Book Electric Vehicle Technology Explained

Download or read book Electric Vehicle Technology Explained written by James Larminie and published by John Wiley & Sons. This book was released on 2012-07-11 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fully updated throughout, Electric Vehicle Technology, Second Edition, is a complete guide to the principles, design and applications of electric vehicle technology. Including all the latest advances, it presents clear and comprehensive coverage of the major aspects of electric vehicle development and offers an engineering-based evaluation of electric motor scooters, cars, buses and trains. This new edition includes: important new chapters on types of electric vehicles, including pickup and linear motors, overall efficiencies and energy consumption, and power generation, particularly for zero carbon emissions expanded chapters updating the latest types of EV, types of batteries, battery technology and other rechargeable devices, fuel cells, hydrogen supply, controllers, EV modeling, ancillary system design, and EV and the environment brand new practical examples and case studies illustrating how electric vehicles can be used to substantially reduce carbon emissions and cut down reliance on fossil fuels futuristic concept models, electric and high-speed trains and developments in magnetic levitation and linear motors an examination of EV efficiencies, energy consumption and sustainable power generation. MATLAB® examples can be found on the companion website www.wiley.com/go/electricvehicle2e Explaining the underpinning science and technology, this book is essential for practicing electrical, automotive, power, control and instrumentation engineers working in EV research and development. It is also a valuable reference for academics and students in automotive, mechanical, power and electrical engineering.