EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book ANALYSIS OF THE EFFICACY OF CARBON DIOXIDE SEQUESTRATION IN DEPLETED SHALE GAS RESERVOIRS

Download or read book ANALYSIS OF THE EFFICACY OF CARBON DIOXIDE SEQUESTRATION IN DEPLETED SHALE GAS RESERVOIRS written by Ihsan Kulga and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this study, the possibility of industrial CO2 storage in shale gas reservoirs is investigated numerically by using one of the most advanced computational simulators in oil and gas industry, PSU-SHALECOMP, which is a compositional dual porosity, dual permeability, multi-phase reservoir simulator. A computationally inexpensive "stimulated reservoir volume" (SRV) model which has the ability to generate a similar behavior of an equivalent discrete fracture network model is defined and implemented. Three different commercial production profiles are history-matched by using the SRV approach effectively. It is re-proved that implementation of the horizontal borehole technology and hydraulic fracturing are the two most important factors that will increase the efficacy of methane production and carbon dioxide injection processes. It is observed that significantly large percentage of the produced gas originates from the fractured zone so as significantly large percentage of the injected gas will end up occupying the pore spaces in the fractured zone. Injection of carbon dioxide into undepleted shale gas reservoirs is not promising because of its ultra-tight permeability characteristics. Injection of carbon dioxide into shale gas reservoirs that have produced approximately 30\% of the initial gas in place is promising. It is observed that when 30\% of shale gas production is achieved, up to 70\% of the depleted gas volume is expected to be replaced by carbon dioxide.The storage capacity of the depleted shale gas reservoir can be increased by injecting carbon dioxide at a rather low rate. A low rate injection of carbon dioxide will increase its residence time in the flow domain increasing its chances for adsorption.If the SRV zones of the production and injection wells are not in direct communication, it is not expected to see carbon dioxide breakthrough at the producing well. It is also investigated that contribution of carbon dioxide in enhancing the shale gas recovery is negligible. The study includes developments of four artificial neural network tools that have different production of methane and injection of carbon dioxide constraints. These four forward tools can produce production and injection profiles of a given system within an error range of 3.83\% to 5.23\%. This part of the study also includes four additional artificial neural network tools that predicts wellbore design and hydraulic fracture characteristics within an error range of 8.24\% to 9.93\%.

Book Analysis of the Efficacy of Carbon Dioxide Sequestration in Depleted Coalbed Methane Reservoirs

Download or read book Analysis of the Efficacy of Carbon Dioxide Sequestration in Depleted Coalbed Methane Reservoirs written by Liyang Liu and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this study, the viability of Carbon Dioxide (CO2) sequestration in depleted Coalbed reservoirs is investigated using Computer Modeling Group LTDs (CMG) Compositional & Unconventional Simulator (GEM). This simulator features dual-porosity and dual-permeability functions, and thus best suits the needs of the model intended. In order to imitate a stimulation fracture network around the horizontal well, a Stimulated Reservoir Volume (SRV) approach was implemented. Three different models with varied grid size, matrix properties, production rates, and injection rates were investigated in order to determine proper variable ranges for the Monte Carlo Simulation and the Artificial Neural Network (ANN) study, presented in the later part of the study.With low permeability and porosity, Coalbed methane cannot be easily produced, nor can CO2 be easily injected, without the implementation of fracture stimulation techniques. The SRV approach significantly improved case performances of both CH4 production and CO2 injection [1]. With varied production sand face pressure, production rates for each of the cases will be different. However, producers will be shut-in at a uniform minimum production rate of 300 MSCFD, followed by the opening of injectors at the same well location. Injection performances will be evaluated in this study.During the final stage of this study, three Artificial Neural Network tools were developed in order to predict various sets of data using combinations of input variables. The first tool can predict production and injection profiles of a given system with error very close or less than 20%. The second tool can predict wellbore design parameters and fracture characteristics with error less than 20%. The third tool can predict formation characteristics with error less than 20%, with the exception of one variable having larger error, yet within acceptable range.

Book Carbon Sequestration Atlas of the United States and Canada

Download or read book Carbon Sequestration Atlas of the United States and Canada written by and published by . This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Interdisciplinary Investigation of CO2 Sequestration in Depleted Shale Gas Formations

Download or read book Interdisciplinary Investigation of CO2 Sequestration in Depleted Shale Gas Formations written by and published by . This book was released on 2013 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: This project investigates the feasibility of geologic sequestration of CO2 in depleted shale gas reservoirs from an interdisciplinary viewpoint. It is anticipated that over the next two decades, tens of thousands of wells will be drilled in the 23 states in which organic-rich shale gas deposits are found. This research investigates the feasibility of using these formations for sequestration. If feasible, the number of sites where CO2 can be sequestered increases dramatically. The research embraces a broad array of length scales ranging from the ~10 nanometer scale of the pores in the shale formations to reservoir scale through a series of integrated laboratory and theoretical studies.

Book Mechanisms for CO2 Sequestration in Geological Formations and Enhanced Gas Recovery

Download or read book Mechanisms for CO2 Sequestration in Geological Formations and Enhanced Gas Recovery written by Roozbeh Khosrokhavar and published by Springer. This book was released on 2015-10-28 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives background information why shale formations in the world are important both for storage capacity and enhanced gas recovery (EGR). Part of this book investigates the sequestration capacity in geological formations and the mechanisms for the enhanced storage rate of CO2 in an underlying saline aquifer. The growing concern about global warming has increased interest in geological storage of carbon dioxide (CO2). The main mechanism of the enhancement, viz., the occurrence of gravity fingers, which are the vehicles of enhanced transport in saline aquifers, can be visualized using the Schlieren technique. In addition high pressure experiments confirmed that the storage rate is indeed enhanced in porous media. The book is appropriate for graduate students, researchers and advanced professionals in petroleum and chemical engineering. It provides the interested reader with in-depth insights into the possibilities and challenges of CO2 storage and the EGR prospect.

Book Geomechanical Studies of the Barnett Shale  Texas  USA

Download or read book Geomechanical Studies of the Barnett Shale Texas USA written by John Peter Vermylen and published by Stanford University. This book was released on 2011 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents five studies of a gas shale reservoir using diverse methodologies to investigate geomechanical and transport properties that are important across the full reservoir lifecycle. Using the Barnett shale as a case study, we investigated adsorption, permeability, geomechanics, microseismicity, and stress evolution in two different study areas. The main goals of this thesis can be divided into two parts: first, to investigate how flow properties evolve with changes in stress and gas species, and second, to understand how the interactions between stress, fractures, and microseismicity control the creation of a permeable reservoir volume during hydraulic fracturing. In Chapter 2, we present results from adsorption and permeability experiments conducted on Barnett shale rock samples. We found Langmuir-type adsorption of CH4 and N2 at magnitudes consistent with previous studies of the Barnett shale. Three of our samples demonstrated BET-type adsorption of CO2, in contrast to all previous studies on CO2 adsorption in gas shales, which found Langmuir-adsorption. At low pressures (600 psi), we found preferential adsorption of CO2 over CH4 ranging from 3.6x to 5.5x. While our measurements were conducted at low pressures (up to 1500 psi), when our model fits are extrapolated to reservoir pressures they reach similar adsorption magnitudes as have been found in previous studies. At these high reservoir pressures, the very large preferential adsorption of CO2 over CH4 (up to 5-10x) suggests a significant potential for CO2 storage in gas shales like the Barnett if practical problems of injectivity and matrix transport can be overcome. We successfully measured permeability versus effective stress on two intact Barnett shale samples. We measured permeability effective stress coefficients less than 1 on both samples, invalidating our hypothesis that there might be throughgoing flow paths within the soft, porous organic kerogen that would lead the permeability effective stress coefficient to be greater than 1. The results suggest that microcracks are likely the dominant flow paths at these scales. In Chapter 3, we present integrated geological, geophysical, and geomechanical data in order to characterize the rock properties in our Barnett shale study area and to model the stress state in the reservoir before hydraulic fracturing occurred. Five parallel, horizontal wells were drilled in the study area and then fractured using three different techniques. We used the well logs from a vertical pilot well and a horizontal well to constrain the stress state in the reservoir. While there was some variation along the length of the well, we were able to determine a best fit stress state of Pp = 0.48 psi/ft, Sv = 1.1 psi/ft, SHmax = 0.73 psi/ft, and Shmin = 0.68 psi/ft. Applying this stress state to the mapped natural fractures indicates that there is significant potential for induced shear slip on natural fracture planes in this region of the Barnett, particularly close to the main hydraulic fracture where the pore pressure increase during hydraulic fracturing is likely to be very high. In Chapter 4, we present new techniques to quantify the robustness of hydraulic fracturing in gas shale reservoirs. The case study we analyzed involves five parallel horizontal wells in the Barnett shale with 51 frac stages. To investigate the numbers, sizes, and types of microearthquakes initiated during each frac stage, we created Gutenberg-Richter-type magnitude distribution plots to see if the size of events follows the characteristic scaling relationship found in natural earthquakes. We found that slickwater fracturing does generate a log-linear distribution of microearthquakes, but that it creates proportionally more small events than natural earthquake sources. Finding considerable variability in the generation of microearthquakes, we used the magnitude analysis as a proxy for the "robustness" of the stimulation of a given stage. We found that the conventionally fractured well and the two alternately fractured wells ("zipperfracs") were more effective than the simultaneously fractured wells ("simulfracs") in generating microearthquakes. We also found that the later stages of fracturing a given well were more successful in generating microearthquakes than the early stages. In Chapter 5, we present estimates of stress evolution in our study reservoir through analysis of the instantaneous shut-in pressure (ISIP) at the end of each stage. The ISIP increased stage by stage for all wells, but the simulfrac wells showed the greatest increase and the zipperfrac wells the least. We modeled the stress increase in the reservoir with a simple sequence of 2-D cracks along the length of the well. When using a spacing of one crack per stage, the modeled stress increase was nearly identical to the measured stress increase in the zipperfrac wells. When using three cracks per stage, the modeled final stage stress magnitude matched the measured final stage stress magnitude from the simulfrac wells, but the rate of stress increase in the simulfrac wells was much more gradual than the model predicted. To further investigate the causes of these ISIP trends, we began numerical flow and stress analysis to more realistically model the processes in the reservoir. One of our hypotheses was that the shorter total time needed to complete all the stages of the simulfrac wells was the cause of the greater ISIP increase compared to the zipperfrac wells. The microseismic activity level measured in Chapter 4 also correlates with total length of injection, suggesting leak off into the reservoir encouraged shear failure. Numerical modeling using the coupled FEM and flow software GEOSIM was able to model some cumulative stress increase the reservoir, but the full trend was not replicated. Further work to model field observations of hydraulic fracturing will enhance our understanding of the impact that hydraulic fracturing and stress change have on fracture creation and permeability enhancement in gas shales.

Book Negative Emissions Technologies and Reliable Sequestration

Download or read book Negative Emissions Technologies and Reliable Sequestration written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-04-08 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.

Book Carbon Dioxide Sequestration in Geological Media

Download or read book Carbon Dioxide Sequestration in Geological Media written by Matthias Grobe and published by AAPG. This book was released on 2010-03-01 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past 20 years, the concept of storing or permanently storing carbon dioxide in geological media has gained increasing attention as part of the important technology option of carbon capture and storage within a portfolio of options aimed at reducing anthropogenic emissions of greenhouse gases to the earths atmosphere. This book is structured into eight parts, and, among other topics, provides an overview of the current status and challenges of the science, regional assessment studies of carbon dioxide geological sequestration potential, and a discussion of the economics and regulatory aspects of carbon dioxide sequestration.

Book Geologic Carbon Sequestration

Download or read book Geologic Carbon Sequestration written by V. Vishal and published by Springer. This book was released on 2016-05-11 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.

Book Carbon Sequestration and Its Role in the Global Carbon Cycle

Download or read book Carbon Sequestration and Its Role in the Global Carbon Cycle written by Brian J. McPherson and published by John Wiley & Sons. This book was released on 2013-05-02 with total page 865 pages. Available in PDF, EPUB and Kindle. Book excerpt: Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 183. For carbon sequestration the issues of monitoring, risk assessment, and verification of carbon content and storage efficacy are perhaps the most uncertain. Yet these issues are also the most critical challenges facing the broader context of carbon sequestration as a means for addressing climate change. In response to these challenges, Carbon Sequestration and Its Role in the Global Carbon Cycle presents current perspectives and research that combine five major areas: The global carbon cycle and verification and assessment of global carbon sources and sinks Potential capacity and temporal/spatial scales of terrestrial, oceanic, and geologic carbon storage Assessing risks and benefits associated with terrestrial, oceanic, and geologic carbon storage Predicting, monitoring, and verifying effectiveness of different forms of carbon storage Suggested new CO2 sequestration research and management paradigms for the future. The volume is based on a Chapman Conference and will appeal to the rapidly growing group of scientists and engineers examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological repositories.

Book Carbon Sequestration with Enhanced Gas Recovery

Download or read book Carbon Sequestration with Enhanced Gas Recovery written by and published by . This book was released on 2001 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: Depleted natural gas reservoirs are promising targets for carbon dioxide sequestration. Although depleted, these reservoirs are not devoid of methane, and carbon dioxide injection may allow enhanced production of methane by reservoir repressurization or pressure maintenance. Based on the favorable results of numerous simulation studies, we propose a field test of the Carbon Sequestration with Enhanced Gas Recovery (CSEGR) process. The objective of the field test is to evaluate the feasibility of CSEGR in terms of reservoir processes such as injectivity, repressurization, flow and transport of carbon dioxide, and enhanced production of methane. The main criteria for the field site include small reservoir volume and high permeability so that increases in pressure and enhanced recovery will occur over a reasonably short time period. The Rio Vista Gas Field in the delta of California's Central Valley offers potential as a test site, although we are currently looking broadly for other potential sites of opportunity.

Book Climate Intervention

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 2015-06-17
  • ISBN : 0309305322
  • Pages : 235 pages

Download or read book Climate Intervention written by National Research Council and published by National Academies Press. This book was released on 2015-06-17 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: The signals are everywhere that our planet is experiencing significant climate change. It is clear that we need to reduce the emissions of carbon dioxide and other greenhouse gases from our atmosphere if we want to avoid greatly increased risk of damage from climate change. Aggressively pursuing a program of emissions abatement or mitigation will show results over a timescale of many decades. How do we actively remove carbon dioxide from the atmosphere to make a bigger difference more quickly? As one of a two-book report, this volume of Climate Intervention discusses CDR, the carbon dioxide removal of greenhouse gas emissions from the atmosphere and sequestration of it in perpetuity. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration introduces possible CDR approaches and then discusses them in depth. Land management practices, such as low-till agriculture, reforestation and afforestation, ocean iron fertilization, and land-and-ocean-based accelerated weathering, could amplify the rates of processes that are already occurring as part of the natural carbon cycle. Other CDR approaches, such as bioenergy with carbon capture and sequestration, direct air capture and sequestration, and traditional carbon capture and sequestration, seek to capture CO2 from the atmosphere and dispose of it by pumping it underground at high pressure. This book looks at the pros and cons of these options and estimates possible rates of removal and total amounts that might be removed via these methods. With whatever portfolio of technologies the transition is achieved, eliminating the carbon dioxide emissions from the global energy and transportation systems will pose an enormous technical, economic, and social challenge that will likely take decades of concerted effort to achieve. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration will help to better understand the potential cost and performance of CDR strategies to inform debate and decision making as we work to stabilize and reduce atmospheric concentrations of carbon dioxide.

Book The Industrial Base for Carbon Dioxide Storage

Download or read book The Industrial Base for Carbon Dioxide Storage written by David S. Ortiz and published by Rand Corporation. This book was released on 2013-03-15 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: If policies aimed at large reductions of carbon dioxide (CO2) emissions are enacted, more carbon capture and storage will be needed. RAND researchers explored the ability of the industrial base supporting the transportation and sequestration of CO2 to expand, assessing the industrial base for transportation and injection of CO2 for both geologic storage and enhanced oil recovery.

Book Geological Storage of Carbon Dioxide  CO2

Download or read book Geological Storage of Carbon Dioxide CO2 written by J Gluyas and published by Elsevier. This book was released on 2013-11-23 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geological storage and sequestration of carbon dioxide, in saline aquifers, depleted oil and gas fields or unminable coal seams, represents one of the most important processes for reducing humankind’s emissions of greenhouse gases. Geological storage of carbon dioxide (CO2) reviews the techniques and wider implications of carbon dioxide capture and storage (CCS). Part one provides an overview of the fundamentals of the geological storage of CO2. Chapters discuss anthropogenic climate change and the role of CCS, the modelling of storage capacity, injectivity, migration and trapping of CO2, the monitoring of geological storage of CO2, and the role of pressure in CCS. Chapters in part two move on to explore the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and public engagement in projects, and the legal framework for CCS. Finally, part three focuses on a variety of different projects and includes case studies of offshore CO2 storage at Sleipner natural gas field beneath the North Sea, the CO2CRC Otway Project in Australia, on-shore CO2 storage at the Ketzin pilot site in Germany, and the K12-B CO2 injection project in the Netherlands. Geological storage of carbon dioxide (CO2) is a comprehensive resource for geoscientists and geotechnical engineers and academics and researches interested in the field. Reviews the techniques and wider implications of carbon dioxide capture and storage (CCS) An overview of the fundamentals of the geological storage of CO2 discussing the modelling of storage capacity, injectivity, migration and trapping of CO2 among other subjects Explores the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and the legal framework for CCS