EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Aero thermal Characteristics and Film Cooling of Transonic Turbine Blade Tips

Download or read book Aero thermal Characteristics and Film Cooling of Transonic Turbine Blade Tips written by Andrew Saul and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Effects of Pressure Side Film Cooling Hole Placement and Configuration on Surface Heat Transfer Characteristics of a Transonic Turbine Squealer Blade Tip

Download or read book Effects of Pressure Side Film Cooling Hole Placement and Configuration on Surface Heat Transfer Characteristics of a Transonic Turbine Squealer Blade Tip written by Hallie Collopy and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas turbine Blades

Download or read book Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas turbine Blades written by Ernst Rudolf Georg Eckert and published by . This book was released on 1951 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary: Transpiration and film cooling promise to be effective methods of cooling gas-turbine blades; consequently, analytical and experimental investigations are being conducted to obtain a better understanding of these processes. This report serves as an introduction to these cooling methods, explains the physical processes, and surveys the information available for predicting blade temperatures and heat-transfer rates. In addition, the difficulties encountered in obtaining a uniform blade temperature are discussed, and the possibilities of correcting these difficulties are indicated. Air is the only coolant considered in the application of these cooling methods.

Book An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling

Download or read book An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling written by James D. Heidmann and published by . This book was released on 1997 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Orlando, FL, Jun 2 - Jun 5, 1997.

Book Film Cooling Visualization and Heat Transfer on Transonic Turbine Blades

Download or read book Film Cooling Visualization and Heat Transfer on Transonic Turbine Blades written by and published by . This book was released on 2001 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study is an investigation of the film cooling effectiveness and heat transfer coefficient of a two-dimensional turbine rotor blade in a linear transonic cascade. Experiments were performed in Virginia Tech's Cascade Wind Tunnel with an exit Mach number of 1.2 and an exit Reynolds number of 5 x 10 (exp 6) to simulate real engine flow conditions. The freestream and coolant flows were maintained at a total temperature ratio of 2 +0.4 and a total pressure ration of 1.04. The freestream turbulence was approximately 1%. There are six rows of staggered, discrete cooling holes on and near the leading edge of the blade in a showerhead configuration. Cooled air was used as the coolant. Experiments were performed with and without film cooling on the surface of the blade. The heat transfer coefficient was found to increase with the addition of film cooling an average of 14% overall and to a maximum of 26% at the first gauge location. The average film cooling effectiveness that suggest either a transition from a laminar to a turbulent film regime or the regime or the existence of three-dimensionality in the flow-field over the gauges.

Book Transonic Turbine Blade Film Cooling with Shaped Holes

Download or read book Transonic Turbine Blade Film Cooling with Shaped Holes written by Fariborz Forghan and published by . This book was released on 1996 with total page 746 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Turbine Blade Tip Film Cooling Measurements

Download or read book Turbine Blade Tip Film Cooling Measurements written by Dean Andrew Ward and published by . This book was released on 1992 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Studies on Transonic Turbines with Film Cooled Blades

Download or read book Studies on Transonic Turbines with Film Cooled Blades written by and published by . This book was released on 1976 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the third year of the contract, further advances were made towards the goal of gathering the heat transfer and aerodynamics flow data necessary for a good understanding of the performance of film-cooled, highly-loaded, transonic turbine blading. The MIT cascade blowdown facility now fully operational was used in evaluating the heat transfer performance of the four blade profiles designed in the first year of the program. The results show that the level of turbulence is an important parameter in determining heat transfer in transonic cascades. It also shows that the heat transfer to the trailing edge of the blades is very high being about 75% of the heat transfer to the leading edge. A comparison of the Nusselt number calculated from heat transfer measurements with the Nusselt number obtained by a prediction method using the pressure distribution shows good correspondence. The variation of average Stanton number over a range of Mach numbers shows that the reference blade has the most superior heat transfer performance. Preliminary data has been obtained on the off-design performance of the blades and full scale tests are underway. Comparative studies show that about 21% less heat needs to be taken out by internal cooling if one stage of a transonic turbine is used to replace two moderately loaded subsonic stages which produce the same output, have the same inlet stagnation conditions, have the same mass flow and the same tip speed. This demonstrates one of the potential advantages of transonic turbines.

Book Effect of Chord Size on Weight and Cooling Characteristics of Air cooled Turbine Blades

Download or read book Effect of Chord Size on Weight and Cooling Characteristics of Air cooled Turbine Blades written by Jack B. Esgar and published by . This book was released on 1957 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: An analysis has been made to determine the effect of chord size on the weight and cooling characteristics of shell-supported, air-cooled gas-turbine blades. In uncooled turbines with solid blades, the general practice has been to design turbines with high aspect ratio (small blade chord) to achieve substantial turbine weight reduction. With air-cooled blades, this study shows that turbine blade weight is affected to a much smaller degree by the size of the blade chord.

Book Effects of Film Cooling on Turbine Blade Tip Flow Structures and Thermal Loading

Download or read book Effects of Film Cooling on Turbine Blade Tip Flow Structures and Thermal Loading written by Louis Edward Christensen and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas turbine engines are an essential technology in aviation and power generation. One of the challenges associated with increasing the efficiency of gas turbines is the thermal loading experienced by the engine components downstream of the combustors especially the high-pressure turbine blades. High temperatures and rotational velocities can cause blade failures in numerous ways such as creep or stress rupture. Technologies like film cooling are implemented in these components to lower the thermal loading and reduce the risk of failure. However, these introduce complexities into the flow which in turn increases the difficulty of predicting the performance of film cooled turbines. Accurately predicting the capabilities of these components is essential to prevent failure in gas turbine engines. Engineers use a combination of experiments and computational simulations to understand how these technologies perform and predict the operating conditions and lifespan of these components. A combined experimental and numerical program is performed on a single stage high-pressure turbine to increase understanding of film cooling in gas turbines and improve computational methods used to predict their performance. The turbine studied is a contemporary production model from Honeywell Aerospace with both cooled and uncooled turbine blades. The experimental work is performed at The Ohio State University Gas Turbine Laboratory Turbine Test Facility, a short duration facility operating at engine corrected conditions. The experiments capture heat flux, temperature, and pressure data across the entire blade, but this work will focus on the turbine blade tip data. Tip temperature data are captured using a high-speed infrared camera providing a unique data set unseen in the current literature. In addition to the experiments, transient conjugate heat transfer simulations of a single turbine passage are performed to recreate the experiments and give insight into the flow field in the tip region of the turbine blades. The experiments and simulations are conducted to provide a better understanding of the interactions of the film cooling and tip flows along with their relationship to the thermal loading on the turbine blade tip. Film cooling in the tip region adds complexity to the flow and a non-intuitive relationship exists between film cooling and thermal loading. Addition of cooling is not guaranteed to reduce the thermal loading on the blade tips. Cooling jets can displace hot gases protecting the blade, but they are also capable of shifting flow structures and trapping hot gases near the blade surface especially so in corners of the blade tips. These direct and indirect methods of altering the thermal loading open a new path to optimization where engineers consider how the coolant alters the flow in addition to forming a protective layer of cool gas. This can be done to more effectively use coolant not only in the blade tips but elsewhere on the turbine blades leading to higher engine efficiencies and more sustainable gas turbine engines.

Book Gas Turbine Blade Cooling

Download or read book Gas Turbine Blade Cooling written by Chaitanya D Ghodke and published by SAE International. This book was released on 2018-12-10 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.

Book Advanced technologies in flow dynamics and combustion in propulsion and power  volume II

Download or read book Advanced technologies in flow dynamics and combustion in propulsion and power volume II written by Lei Luo and published by Frontiers Media SA. This book was released on 2023-02-09 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Effect of Wake Passing on Turbine Blade Film Cooling

Download or read book The Effect of Wake Passing on Turbine Blade Film Cooling written by James D. Heidmann and published by . This book was released on 1996 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 994 pages. Available in PDF, EPUB and Kindle. Book excerpt: