EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book VLSI Physical Design Automation for Double Patterning and Emerging Lithography

Download or read book VLSI Physical Design Automation for Double Patterning and Emerging Lithography written by Kun Yuan and published by . This book was released on 2010 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to aggressive scaling in semiconductor industry, the traditional optical lithography system is facing great challenges printing 32nm and below circuit layouts. Various promising nanolithography techniques have been developed as alternative solutions for patterning sub-32nm feature size. This dissertation studies physical design related optimization problem for these emerging methodologies, mainly focusing on double patterning and electronic beam lithography. Double Patterning Lithography (DPL) decomposes a single layout into two masks, and patterns the chip in two exposure steps. As a benefit, the pitch size is doubled, which enhances the resolution. However, the decomposition process is not a trivial task. Conflict and stitch are its two main manufacturing challenges. First of all, a post-routing layout decomposer has been developed to perform simultaneous conflict and stitch minimization, making use of the integer linear programming and efficient graph reduction techniques. Compared to the previous work which optimizes conflict and stitch separately, the proposed method produces significantly better result. Redundant via insertion, another key yield improvement technique, may increase the complexity in DPL-compliance. It could easily introduce unmanufacturable conflict, while not carefully planned and inserted. Two algorithms have been developed to take care of this redundant via DPL-compliance problem in the design side. While design itself is not DPL-friendly, post-routing decomposition may not achieve satisfactory solution quality. An efficient framework of WISDOM has been further proposed to perform wire spreading for better conflict and stitch elimination. The solution quality has been improved in great extent, with a little extra layout perturbations. As another promising solution for sub-22nm, Electronic Beam Lithography (EBL) is a maskless technology which shoots desired patterns directly into a silicon wafer, with charged particle beam. EBL overcomes the diffraction limit of light in current optical lithography system, however, the low throughput becomes its key technical hurdle. The last work of my dissertation formulates and investigates a bin-packing problem for reducing the processing time of EBL.

Book Physical Design and Mask Synthesis for Directed Self Assembly Lithography

Download or read book Physical Design and Mask Synthesis for Directed Self Assembly Lithography written by Seongbo Shim and published by Springer. This book was released on 2018-03-21 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses physical design and mask synthesis of directed self-assembly lithography (DSAL). It covers the basic background of DSAL technology, physical design optimizations such as placement and redundant via insertion, and DSAL mask synthesis as well as its verification. Directed self-assembly lithography (DSAL) is a highly promising patterning solution in sub-7nm technology.

Book Design for Manufacturability with Advanced Lithography

Download or read book Design for Manufacturability with Advanced Lithography written by Bei Yu and published by Springer. This book was released on 2015-10-28 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to the most advanced research results on Design for Manufacturability (DFM) with multiple patterning lithography (MPL) and electron beam lithography (EBL). The authors describe in detail a set of algorithms/methodologies to resolve issues in modern design for manufacturability problems with advanced lithography. Unlike books that discuss DFM from the product level or physical manufacturing level, this book describes DFM solutions from a circuit design level, such that most of the critical problems can be formulated and solved through combinatorial algorithms.

Book Physical Synthesis for Nanometer VLSI and Emerging Technologies

Download or read book Physical Synthesis for Nanometer VLSI and Emerging Technologies written by Minsik Cho and published by . This book was released on 2008 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unabated silicon technology scaling makes design and manufacturing increasingly harder in nanometer VLSI. Emerging technologies on the horizon require strong design automation to handle the large complexity of future systems. This dissertation studies eight related research topics in design and manufacturing closure in nanometer VLSI as well as design optimization for emerging technologies from physical synthesis perspective. In physical synthesis for design closure, we study three research topics, which are key challenges in nanometer VLSI designs: (a) We propose a highly efficient floorplanning algorithm to minimize substrate noise for mixed-signal system-on-a-chip designs. (b) We propose a clock tree synthesis algorithm to reduce clock skew under thermal variation. (c) We develop a global router, BoxRouter to enhance routability which is one of the classic but still critical challenges in modern VLSI. In physical synthesis for manufacturing closure, we propose the first systematic manufacturability aware routing framework to address three key manufacturing challenges: (a) We develop a predictive chemical-mechanical polishing model to guide global routing in order to reduce surface topography variation. (b) We formulate a random defect minimize problem in track routing, and develop a highly efficient algorithm. (b) We propose a lithography enhancement technique during detailed routing based on statistical and macro-level Post-OPC printability prediction. Regarding design optimization of emerging technologies, we focus on two topics, one in double patterning technology for future VLSI fabrication and the other in microfluidics for biochips: (a) We claim double patterning should be considered during physical synthesis, and propose an effective double patterning technology aware detailed routing algorithm. (b) We propose a droplet routing algorithm to improve routability in digital microfluidic biochip design.

Book VLSI Physical Design Automation

Download or read book VLSI Physical Design Automation written by Sadiq M. Sait and published by World Scientific. This book was released on 1999 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: &Quot;VLSI Physical Design Automation: Theory and Practice is an essential introduction for senior undergraduates, postgraduates and anyone starting work in the field of CAD for VLSI. It covers all aspects of physical design, together with such related areas as automatic cell generation, silicon compilation, layout editors and compaction. A problem-solving approach is adopted and each solution is illustrated with examples. Each topic is treated in a standard format: Problem Definition, Cost Functions and Constraints, Possible Approaches and Latest Developments."--BOOK JACKET.

Book Algorithms for VLSI Physical Design Automation

Download or read book Algorithms for VLSI Physical Design Automation written by Naveed A. Sherwani and published by Springer. This book was released on 1999 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algorithms for VLSI Physical Design Automation, Third Edition covers all aspects of physical design. The book is a core reference for graduate students and CAD professionals. For students, concepts and algorithms are presented in an intuitive manner. For CAD professionals, the material presents a balance of theory and practice. An extensive bibliography is provided which is useful for finding advanced material on a topic. At the end of each chapter, exercises are provided, which range in complexity from simple to research level. Algorithms for VLSI Physical Design Automation, Third Edition provides a comprehensive background in the principles and algorithms of VLSI physical design. The goal of this book is to serve as a basis for the development of introductory-level graduate courses in VLSI physical design automation. It provides self-contained material for teaching and learning algorithms of physical design. All algorithms which are considered basic have been included, and are presented in an intuitive manner. Yet, at the same time, enough detail is provided so that readers can actually implement the algorithms given in the text and use them. The first three chapters provide the background material, while the focus of each chapter of the rest of the book is on each phase of the physical design cycle. In addition, newer topics such as physical design automation of FPGAs and MCMs have been included. The basic purpose of the third edition is to investigate the new challenges presented by interconnect and process innovations. In 1995 when the second edition of this book was prepared, a six-layer process and 15 million transistor microprocessors were in advanced stages of design. In 1998, six metal process and 20 million transistor designs are in production. Two new chapters have been added and new material has been included in almost allother chapters. A new chapter on process innovation and its impact on physical design has been added. Another focus of the third edition is to promote use of the Internet as a resource, so wherever possible URLs have been provided for further investigation. Algorithms for VLSI Physical Design Automation, Third Edition is an important core reference work for professionals as well as an advanced level textbook for students.

Book Electronic Design Automation for IC Implementation  Circuit Design  and Process Technology

Download or read book Electronic Design Automation for IC Implementation Circuit Design and Process Technology written by Luciano Lavagno and published by CRC Press. This book was released on 2017-02-03 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second of two volumes in the Electronic Design Automation for Integrated Circuits Handbook, Second Edition, Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology thoroughly examines real-time logic (RTL) to GDSII (a file format used to transfer data of semiconductor physical layout) design flow, analog/mixed signal design, physical verification, and technology computer-aided design (TCAD). Chapters contributed by leading experts authoritatively discuss design for manufacturability (DFM) at the nanoscale, power supply network design and analysis, design modeling, and much more. New to This Edition: Major updates appearing in the initial phases of the design flow, where the level of abstraction keeps rising to support more functionality with lower non-recurring engineering (NRE) costs Significant revisions reflected in the final phases of the design flow, where the complexity due to smaller and smaller geometries is compounded by the slow progress of shorter wavelength lithography New coverage of cutting-edge applications and approaches realized in the decade since publication of the previous edition—these are illustrated by new chapters on 3D circuit integration and clock design Offering improved depth and modernity, Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology provides a valuable, state-of-the-art reference for electronic design automation (EDA) students, researchers, and professionals.

Book Pattern Matching for Advanced Lithographic Technologies

Download or read book Pattern Matching for Advanced Lithographic Technologies written by Juliet Alison Rubinstein and published by . This book was released on 2010 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Security Opportunities in Nano Devices and Emerging Technologies

Download or read book Security Opportunities in Nano Devices and Emerging Technologies written by Mark Tehranipoor and published by CRC Press. This book was released on 2017-11-22 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: The research community lacks both the capability to explain the effectiveness of existing techniques and the metrics to predict the security properties and vulnerabilities of the next generation of nano-devices and systems. This book provides in-depth viewpoints on security issues and explains how nano devices and their unique properties can address the opportunities and challenges of the security community, manufacturers, system integrators, and end users. This book elevates security as a fundamental design parameter, transforming the way new nano-devices are developed. Part 1 focuses on nano devices and building security primitives. Part 2 focuses on emerging technologies and integrations.

Book Lithography Aware Physical Design and Layout Optimization for Manufacturability

Download or read book Lithography Aware Physical Design and Layout Optimization for Manufacturability written by Jhih-Rong Gao and published by . This book was released on 2014 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: As technology continues to scale down, semiconductor manufacturing with 193nm lithography is greatly challenging because the required half pitch size is beyond the resolution limit. In order to bridge the gap between design requirements and manufacturing limitations, various resolution enhancement techniques have been proposed to avoid potentially problematic patterns and to improve product yield. In addition, co-optimization between design performance and manufacturability can further provide flexible and significant yield improvement, and it has become necessary for advanced technology nodes. This dissertation presents the methodologies to consider the lithography impact in different design stages to improve layout manufacturability. Double Patterning Lithography (DPL) has been a promising solution for sub-22nm node volume production. Among DPL techniques, self-aligned double patterning (SADP) provides good overlay controllability when two masks are not aligned perfectly. However, SADP process places several limitations on design flexibility and still exists many challenges in physical design stages. Starting from the early design stage, we analyze the standard cell designs and construct a set of SADP-aware cell placement candidates, and show that placement legalization based on this SADP awareness information can effectively resolve DPL conflicts. In the detailed routing stage, we propose a new routing cost formulation based on SADP-compliant routing guidelines, and achieve routing and layout decomposition simultaneously. In the case that limited routing perturbation is allowed, we propose a post-routing flow based on lithography simulation and lithography-aware design rules. Both routing methods, one in detailed routing stage and one in post routing stage, reduce DPL conflicts/violations significantly with negligible wire length impact. In the layout decomposition stage, layout modification is restricted and thus the manufacturability is even harder to guaranteed. By taking the advantage of complementary lithography, we present a new layout decomposition approach with e-beam cutting, which optimizes SADP overlay error and e-beam lithography throughput simultaneously. After the mask layout is defined, optical proximity correction (OPC) is one of the resolution enhancement techniques that is commonly required to compensate the image distortion from the lithography process. We propose an inverse lithography technique to solve the OPC problem considering design target and process window co-optimization. Our mask optimization is pixel based and thus can enable better contour fidelity. In the final physical verification stage, a complex and time-consuming lithography simulation needs to be performed to identify faulty patterns. We provide a classification method based on support vector machine and principle component analysis that detects lithographic hotspots efficiently and accurately.

Book Proceedings

Download or read book Proceedings written by and published by . This book was released on 2008 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design for Manufacturing with Directed Self assembly Lithography

Download or read book Design for Manufacturing with Directed Self assembly Lithography written by Jiaojiao Ou and published by . This book was released on 2018 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: In ultra-scaled very-large-scale integration (VLSI), lithography has become the bottleneck in integrated circuit (IC) fabrication. Since the conventional 193nm immersion lithography has reached the resolution limit, multiple patterning (MP) is adopted in order to meet the pitch requirement of ultra-scaled design. However, the manufacturing cost also increases dramatically with the growth of number of masks at the same time. Therefore, industries are looking for alternative lithography techniques to extend the 193nm immersion lithography to the sub-7nm nodes. With the continuous delaying of Extreme Ultraviolet (EUV), Directed Self-Assembly (DSA) lithography has emerged as one of the promising alternative lithography techniques due to its low cost, high throughput, and its ability to multiply the pitch of lines and vias. DSA has been intensively explored by both industry and academia in recent years. Memory and the dense via layer in logic might be the first application of DSA lithography in the mainstream IC production. DSA can also be applied on fabrication of cut masks to reduce the overall wire extensions. However, there are still many challenges, such as defectivity, line edge roughness and placement accuracy, which prevent DSA from the high-volume manufacturing. Integrating this technology into the fab flow and designing circuit around it also remain to be problematic. Considering the limitations and constraints of the topologies of DSA, this dissertation investigates and proposes novel algorithms for the DSA-aware design problem in the areas of design for manufacturability and physical design. First, a DSA based cut mask optimization for unidirectional design is proposed. Efficient algorithm is developed to assign DSA guiding template to metal line ends to minimize wire extensions and conflicts. Second, as redundant via insertion has been widely used in the post-routing stage to improve the yield, but the insertion of more vias introduces challenges for DSA patterning. This dissertation proposes a novel approach to perform the DSA aware redundant via insertion to improve the redundant via insertion rate and DSA compatibility. Since both via grouping and DSA guiding template decomposition are the essential problems for DSA aware design, which should be solved concurrently, this dissertation also proposes an efficient algorithm to solve this problem. Considering multiple patterning has already been used in DSA lithography, a coherent work, including single block-copolymer (BCP) and double block-copolymer guiding template assignment, is proposed for DSA and multiple pattering hybrid lithography. In addition, it is also noticed that optimization in the post-routing stage is not enough to eliminate DSA patterning violations, thus this dissertation also proposes the DSA compliant detailed routing algorithm with concurrent double pattering and guiding templates assignment.

Book Manufacturability Aware Routing in Nanometer VLSI

Download or read book Manufacturability Aware Routing in Nanometer VLSI written by David Z. Pan and published by Now Publishers Inc. This book was released on 2010-05-04 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper surveys key research challenges and recent results of manufacturability aware routing in nanometer VLSI designs. The manufacturing challenges have their root causes from various integrated circuit (IC) manufacturing processes and steps, e.g., deep sub-wavelength lithography, random defects, via voids, chemical-mechanical polishing, and antenna-effects. They may result in both functional and parametric yield losses. The manufacturability aware routing can be performed at different routing stages including global routing, track routing, and detail routing, guided by both manufacturing process models and manufacturing-friendly rules. The manufacturability/yield optimization can be performed through both correct-by-construction (i.e., optimization during routing) as well as construct-by-correction (i.e., post-routing optimization). This paper will provide a holistic view of key design for manufacturability issues in nanometer VLSI routing.

Book VLSI Physical Design  From Graph Partitioning to Timing Closure

Download or read book VLSI Physical Design From Graph Partitioning to Timing Closure written by Andrew B. Kahng and published by Springer Nature. This book was released on 2022-06-14 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: The complexity of modern chip design requires extensive use of specialized software throughout the process. To achieve the best results, a user of this software needs a high-level understanding of the underlying mathematical models and algorithms. In addition, a developer of such software must have a keen understanding of relevant computer science aspects, including algorithmic performance bottlenecks and how various algorithms operate and interact. This book introduces and compares the fundamental algorithms that are used during the IC physical design phase, wherein a geometric chip layout is produced starting from an abstract circuit design. This updated second edition includes recent advancements in the state-of-the-art of physical design, and builds upon foundational coverage of essential and fundamental techniques. Numerous examples and tasks with solutions increase the clarity of presentation and facilitate deeper understanding. A comprehensive set of slides is available on the Internet for each chapter, simplifying use of the book in instructional settings. “This improved, second edition of the book will continue to serve the EDA and design community well. It is a foundational text and reference for the next generation of professionals who will be called on to continue the advancement of our chip design tools and design the most advanced micro-electronics.” Dr. Leon Stok, Vice President, Electronic Design Automation, IBM Systems Group “This is the book I wish I had when I taught EDA in the past, and the one I’m using from now on.” Dr. Louis K. Scheffer, Howard Hughes Medical Institute “I would happily use this book when teaching Physical Design. I know of no other work that’s as comprehensive and up-to-date, with algorithmic focus and clear pseudocode for the key algorithms. The book is beautifully designed!” Prof. John P. Hayes, University of Michigan “The entire field of electronic design automation owes the authors a great debt for providing a single coherent source on physical design that is clear and tutorial in nature, while providing details on key state-of-the-art topics such as timing closure.” Prof. Kurt Keutzer, University of California, Berkeley “An excellent balance of the basics and more advanced concepts, presented by top experts in the field.” Prof. Sachin Sapatnekar, University of Minnesota

Book Machine Learning in VLSI Computer Aided Design

Download or read book Machine Learning in VLSI Computer Aided Design written by Ibrahim (Abe) M. Elfadel and published by Springer. This book was released on 2019-03-15 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with an up-to-date account of the use of machine learning frameworks, methodologies, algorithms and techniques in the context of computer-aided design (CAD) for very-large-scale integrated circuits (VLSI). Coverage includes the various machine learning methods used in lithography, physical design, yield prediction, post-silicon performance analysis, reliability and failure analysis, power and thermal analysis, analog design, logic synthesis, verification, and neuromorphic design. Provides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability; Discusses the use of machine learning techniques in the context of analog and digital synthesis; Demonstrates how to formulate VLSI CAD objectives as machine learning problems and provides a comprehensive treatment of their efficient solutions; Discusses the tradeoff between the cost of collecting data and prediction accuracy and provides a methodology for using prior data to reduce cost of data collection in the design, testing and validation of both analog and digital VLSI designs. From the Foreword As the semiconductor industry embraces the rising swell of cognitive systems and edge intelligence, this book could serve as a harbinger and example of the osmosis that will exist between our cognitive structures and methods, on the one hand, and the hardware architectures and technologies that will support them, on the other....As we transition from the computing era to the cognitive one, it behooves us to remember the success story of VLSI CAD and to earnestly seek the help of the invisible hand so that our future cognitive systems are used to design more powerful cognitive systems. This book is very much aligned with this on-going transition from computing to cognition, and it is with deep pleasure that I recommend it to all those who are actively engaged in this exciting transformation. Dr. Ruchir Puri, IBM Fellow, IBM Watson CTO & Chief Architect, IBM T. J. Watson Research Center

Book Digital Integrated Circuit Design

Download or read book Digital Integrated Circuit Design written by Hubert Kaeslin and published by Cambridge University Press. This book was released on 2008-04-28 with total page 878 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical, tool-independent guide to designing digital circuits takes a unique, top-down approach, reflecting the nature of the design process in industry. Starting with architecture design, the book comprehensively explains the why and how of digital circuit design, using the physics designers need to know, and no more.

Book Fabless

    Book Details:
  • Author : Daniel Nenni
  • Publisher : Createspace Independent Publishing Platform
  • Release : 2014
  • ISBN : 9781497525047
  • Pages : 0 pages

Download or read book Fabless written by Daniel Nenni and published by Createspace Independent Publishing Platform. This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to illustrate the magnificence of the fabless semiconductor ecosystem, and to give credit where credit is due. We trace the history of the semiconductor industry from both a technical and business perspective. We argue that the development of the fabless business model was a key enabler of the growth in semiconductors since the mid-1980s. Because business models, as much as the technology, are what keep us thrilled with new gadgets year after year, we focus on the evolution of the electronics business. We also invited key players in the industry to contribute chapters. These "In Their Own Words" chapters allow the heavyweights of the industry to tell their corporate history for themselves, focusing on the industry developments (both in technology and business models) that made them successful, and how they in turn drive the further evolution of the semiconductor industry.