Download or read book Harmonic Analysis on Reductive Groups written by W. Barker and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: A conference on Harmonic Analysis on Reductive Groups was held at Bowdoin College in Brunswick, Maine from July 31 to August 11, 1989. The stated goal of the conference was to explore recent advances in harmonic analysis on both real and p-adic groups. It was the first conference since the AMS Summer Sym posium on Harmonic Analysis on Homogeneous Spaces, held at Williamstown, Massachusetts in 1972, to cover local harmonic analysis on reductive groups in such detail and to such an extent. While the Williamstown conference was longer (three weeks) and somewhat broader (nilpotent groups, solvable groups, as well as semisimple and reductive groups), the structure and timeliness of the two meetings was remarkably similar. The program of the Bowdoin Conference consisted of two parts. First, there were six major lecture series, each consisting of several talks addressing those topics in harmonic analysis on real and p-adic groups which were the focus of intensive research during the previous decade. These lectures began at an introductory level and advanced to the current state of research. Sec ond, there was a series of single lectures in which the speakers presented an overview of their latest research.
Download or read book Representations of Algebraic Groups written by Jens Carsten Jantzen and published by American Mathematical Soc.. This book was released on 2003 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.
Download or read book An Introduction to Harmonic Analysis on Semisimple Lie Groups written by V. S. Varadarajan and published by Cambridge University Press. This book was released on 1999-07-22 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in paperback, this graduate-level textbook is an introduction to the representation theory of semi-simple Lie groups. As such, it will be suitable for research students in algebra and analysis, and for research mathematicians requiring a readable account of the topic. The author emphasizes the development of the central themes of the sunject in the context of special examples, without losing sight of its general flow and structure. The book concludes with appendices sketching some basic topics with a comprehensive guide to further reading.
Download or read book Harmonic Analysis on Real Reductive Groups written by V.S. Varadarajan and published by Springer. This book was released on 2006-11-14 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Harmonic Analysis on Reductive p adic Groups written by Robert S. Doran, Paul J. Sally, Jr., and Loren Spice and published by American Mathematical Soc.. This book was released on 2011 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Harmonic Analysis the Trace Formula and Shimura Varieties written by Clay Mathematics Institute. Summer School and published by American Mathematical Soc.. This book was released on 2005 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: Langlands program proposes fundamental relations that tie arithmetic information from number theory and algebraic geometry with analytic information from harmonic analysis and group representations. This title intends to provide an entry point into this exciting and challenging field.
Download or read book Random Walks on Reductive Groups written by Yves Benoist and published by Springer. This book was released on 2016-10-20 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical theory of random walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple – or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.
Download or read book Harmonic Analysis of Spherical Functions on Real Reductive Groups written by Ramesh Gangolli and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis on Symmetric spaces, or more generally, on homogeneous spaces of semisimple Lie groups, is a subject that has undergone a vigorous development in recent years, and has become a central part of contemporary mathematics. This is only to be expected, since homogeneous spaces and group representations arise naturally in diverse contexts ranging from Number theory and Geometry to Particle Physics and Polymer Chemistry. Its explosive growth sometimes makes it difficult to realize that it is actually relatively young as mathematical theories go. The early ideas in the subject (as is the case with many others) go back to Elie Cart an and Hermann Weyl who studied the compact symmetric spaces in the 1930's. However its full development did not begin until the 1950's when Gel'fand and Harish Chandra dared to dream of a theory of representations that included all semisimple Lie groups. Harish-Chandra's theory of spherical functions was essentially complete in the late 1950's, and was to prove to be the forerunner of his monumental work on harmonic analysis on reductive groups that has inspired a whole generation of mathematicians. It is the harmonic analysis of spherical functions on symmetric spaces, that is at the focus of this book. The fundamental questions of harmonic analysis on symmetric spaces involve an interplay of the geometric, analytical, and algebraic aspects of these spaces. They have therefore attracted a great deal of attention, and there have been many excellent expositions of the themes that are characteristic of this subject.
Download or read book Harmonic Analysis on Reductive p adic Groups written by B. Harish-Chandra and published by Springer. This book was released on 2006-11-15 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Harmonic and Applied Analysis written by Stephan Dahlke and published by Birkhäuser. This book was released on 2015-09-12 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume explores the connection between the theoretical aspects of harmonic analysis and the construction of advanced multiscale representations that have emerged in signal and image processing. It highlights some of the most promising mathematical developments in harmonic analysis in the last decade brought about by the interplay among different areas of abstract and applied mathematics. This intertwining of ideas is considered starting from the theory of unitary group representations and leading to the construction of very efficient schemes for the analysis of multidimensional data. After an introductory chapter surveying the scientific significance of classical and more advanced multiscale methods, chapters cover such topics as An overview of Lie theory focused on common applications in signal analysis, including the wavelet representation of the affine group, the Schrödinger representation of the Heisenberg group, and the metaplectic representation of the symplectic group An introduction to coorbit theory and how it can be combined with the shearlet transform to establish shearlet coorbit spaces Microlocal properties of the shearlet transform and its ability to provide a precise geometric characterization of edges and interface boundaries in images and other multidimensional data Mathematical techniques to construct optimal data representations for a number of signal types, with a focus on the optimal approximation of functions governed by anisotropic singularities. A unified notation is used across all of the chapters to ensure consistency of the mathematical material presented. Harmonic and Applied Analysis: From Groups to Signals is aimed at graduate students and researchers in the areas of harmonic analysis and applied mathematics, as well as at other applied scientists interested in representations of multidimensional data. It can also be used as a textbook for graduate courses in applied harmonic analysis.
Download or read book Harmonic Analysis on Homogeneous Spaces written by Nolan R. Wallach and published by Courier Dover Publications. This book was released on 2018-12-12 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is suitable for advanced undergraduate and graduate students in mathematics with a strong background in linear algebra and advanced calculus. Early chapters develop representation theory of compact Lie groups with applications to topology, geometry, and analysis, including the Peter-Weyl theorem, the theorem of the highest weight, the character theory, invariant differential operators on homogeneous vector bundles, and Bott's index theorem for such operators. Later chapters study the structure of representation theory and analysis of non-compact semi-simple Lie groups, including the principal series, intertwining operators, asymptotics of matrix coefficients, and an important special case of the Plancherel theorem. Teachers will find this volume useful as either a main text or a supplement to standard one-year courses in Lie groups and Lie algebras. The treatment advances from fairly simple topics to more complex subjects, and exercises appear at the end of each chapter. Eight helpful Appendixes develop aspects of differential geometry, Lie theory, and functional analysis employed in the main text.
Download or read book Representations of Reductive Groups written by Monica Nevins and published by Birkhäuser. This book was released on 2015-12-18 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last forty years, David Vogan has left an indelible imprint on the representation theory of reductive groups. His groundbreaking ideas have lead to deep advances in the theory of real and p-adic groups, and have forged lasting connections with other subjects, including number theory, automorphic forms, algebraic geometry, and combinatorics. Representations of Reductive Groups is an outgrowth of the conference of the same name, dedicated to David Vogan on his 60th birthday, which took place at MIT on May 19-23, 2014. This volume highlights the depth and breadth of Vogan's influence over the subjects mentioned above, and point to many exciting new directions that remain to be explored. Notably, the first article by McGovern and Trapa offers an overview of Vogan's body of work, placing his ideas in a historical context. Contributors: Pramod N. Achar, Jeffrey D. Adams, Dan Barbasch, Manjul Bhargava, Cédric Bonnafé, Dan Ciubotaru, Meinolf Geck, William Graham, Benedict H. Gross, Xuhua He, Jing-Song Huang, Toshiyuki Kobayashi, Bertram Kostant, Wenjing Li, George Lusztig, Eric Marberg, William M. McGovern, Wilfried Schmid, Kari Vilonen, Diana Shelstad, Peter E. Trapa, David A. Vogan, Jr., Nolan R. Wallach, Xiaoheng Wang, Geordie Williamson
Download or read book Geometric and Harmonic Analysis on Homogeneous Spaces written by Ali Baklouti and published by Springer Nature. This book was released on 2019-08-31 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a number of important contributions focusing on harmonic analysis and representation theory of Lie groups. All were originally presented at the 5th Tunisian–Japanese conference “Geometric and Harmonic Analysis on Homogeneous Spaces and Applications”, which was held at Mahdia in Tunisia from 17 to 21 December 2017 and was dedicated to the memory of the brilliant Tunisian mathematician Majdi Ben Halima. The peer-reviewed contributions selected for publication have been modified and are, without exception, of a standard equivalent to that in leading mathematical periodicals. Highlighting the close links between group representation theory and harmonic analysis on homogeneous spaces and numerous mathematical areas, such as number theory, algebraic geometry, differential geometry, operator algebra, partial differential equations and mathematical physics, the book is intended for researchers and students working in the area of commutative and non-commutative harmonic analysis as well as group representations.
Download or read book Continuous Cohomology Discrete Subgroups and Representations of Reductive Groups written by Armand Borel and published by American Mathematical Soc.. This book was released on 2013-11-21 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: It has been nearly twenty years since the first edition of this work. In the intervening years, there has been immense progress in the use of homological algebra to construct admissible representations and in the study of arithmetic groups. This second edition is a corrected and expanded version of the original, which was an important catalyst in the expansion of the field. Besides the fundamental material on cohomology and discrete subgroups present in the first edition, this edition also contains expositions of some of the most important developments of the last two decades.
Download or read book Causal Symmetric Spaces written by Gestur Olafsson and published by Academic Press. This book was released on 1996-09-11 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces
Download or read book Representation Theory and Harmonic Analysis on Semisimple Lie Groups written by Paul J. Sally (Jr.) and published by American Mathematical Soc.. This book was released on 1989 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together five papers that have been influential in the study of Lie groups. Though published more than 20 years ago, these papers made fundamental contributions that deserve much broader exposure. In addition, the subsequent literature that has subsumed these papers cannot replace the originality and vitality they contain. The editors have provided a brief introduction to each paper, as well as a synopsis of the major developments which have occurred in the area covered by each paper. Included here are the doctoral theses of Arthur, Osborne, and Schmid. Arthur's thesis is closely related to Trombi's paper insofar as both deal with harmonic analysis on real semisimple Lie groups, and, in particular, analysis on the Schwartz space of Harish-Chandra. Arthur's thesis is concerned with the image under the Fourier transform of the Schwartz space of a semisimple Lie group of real rank one, while Trombi's paper provides an expository account of the harmonic analysis associated to the decomposition of the Schwartz space under the regular representation. In his thesis, Osborne extends the Atiyah-Bott fixed point theorem for elliptic complexes to obtain a fixed point formula for complexes that are not elliptic. Schmid proves a generalization of the Borel-Weil theorem concerning an explicit and geometric realization of the irreducible representations of a compact, connected semisimple Lie group. Langlands's fundamental paper provides a classification of irreducible, admissible representations of real reductive Lie groups.
Download or read book Selected Papers on Harmonic Analysis Groups and Invariants written by Katsumi Nomizu and published by American Mathematical Soc.. This book was released on 1997 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: The five papers originally appeared in Japanese in the journal Sugaku and would ordinarily appear in the Society's translation of that journal, but are published separately here to expedite their dissemination. They explore such aspects as representation theory, differential geometry, invariant theory, and complex analysis. No index. Member prices are $47 for institutions and $35 for individual. Annotation copyrighted by Book News, Inc., Portland, OR.