Download or read book Turbulence in Porous Media written by Marcelo J.S. de Lemos and published by Elsevier. This book was released on 2012-06-25 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulence in Porous Media introduces the reader to the characterisation of turbulent flow, heat and mass transfer in permeable media, including analytical data and a review of available experimental data. Such transport processes occurring a relatively high velocity in permeable media are present in a number of engineering and natural flows. This new edition features a completely updated text including two new chapters exploring Turbulent Combustion and Moving Porous Media. De Lemos has expertly brought together a text that compiles, details, compares and evaluates available methodologies for modelling and simulating flow, providing an essential tour for engineering students working within the field as well as those working in chemistry, physics, applied mathematics, and geological and environmental sciences. Brings together groundbreaking and complex research on turbulence in porous media Extends the original model to situations including reactive systems Now discusses movement of the porous matrix
Download or read book Transport Phenomena in Porous Media III written by Derek B Ingham and published by Elsevier. This book was released on 2005-07-29 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid and flow problems in porous media have attracted the attention of industrialists, engineers and scientists from varying disciplines, such as chemical, environmental, and mechanical engineering, geothermal physics and food science. There has been a increasing interest in heat and fluid flows through porous media, making this book a timely and appropriate resource.Each chapter is systematically detailed to be easily grasped by a research worker with basic knowledge of fluid mechanics, heat transfer and computational and experimental methods. At the same time, the readers will be informed of the most recent research literature in the field, giving it dual usage as both a post-grad text book and professional reference.Written by the recent directors of the NATO Advanced Study Institute session on 'Emerging Technologies and Techniques in Porous Media' (June 2003), this book is a timely and essential reference for scientists and engineers within a variety of fields.
Download or read book Turbulence in Porous Media written by Marcelo J. S. de Lemos and published by Academic Press. This book was released on 2012-06-25 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Turbulence in Porous Media' introduces the reader to the characterisation of turbulent flow, heat and mass transfer in permeable media, including analytical data and a review of available experimental data. Such transport processes occurring a relatively high velocity in permeable media, are present in a number of engineering and natural flows. De Lemos has managed to compile, detail, compare and evaluate available methodologies for modelling simulating purposes, providing an essential tour for engineering students working within the field. - The hotly debated topic of heterogeneity and flow turbulence has never before been addressed in book format. - Offers an experimental approach to turbulence in porous media as it discusses disciplines that have been traditionally developed apart from each other. The hotly debated topic of heterogeneity and flow turbulence has never before been addressed in book format. Offers an experimental approach to turbulence in porous media as it discusses disciplines that have been traditionally developed apart from each other.
Download or read book Transport Phenomena in Porous Media II written by I. Pop and published by Elsevier. This book was released on 2002-06-20 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transport phenomena in porous media continues to be a field which attracts intensive research activity. This is primarily due to the fact that it plays an important and practical role in a large variety of diverse scientific applications. Transport Phenomena in Porous Media II covers a wide range of the engineering and technological applications, including both stable and unstable flows, heat and mass transfer, porosity, and turbulence.Transport Phenomena in Porous Media II is the second volume in a series emphasising the fundamentals and applications of research in porous media. It contains 16 interrelated chapters of controversial, and in some cases conflicting, research, over a wide range of topics. The first volume of this series, published in 1998, met with a very favourable reception. Transport Phenomena in Porous Media II maintains the original concept including a wide and diverse range of topics, whilst providing an up-to-date summary of recent research in the field by its leading practitioners.
Download or read book Handbook of Porous Media written by Kambiz Vafai and published by CRC Press. This book was released on 2005-03-30 with total page 771 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last three decades, advances in modeling flow, heat, and mass transfer through a porous medium have dramatically transformed engineering applications. Comprehensive and cohesive, Handbook of Porous Media, Second Edition presents a compilation of research related to heat and mass transfer including the development of practical applications
Download or read book Turbulence Models and Their Application written by Tuncer Cebeci and published by Springer Science & Business Media. This book was released on 2003-12-04 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: After a brief review of the more popular turbulence models, the author presents and discusses accurate and efficient numerical methods for solving the boundary-layer equations with turbulence models based on algebraic formulas (mixing length, eddy viscosity) or partial-differential transport equations. A computer program employing the Cebeci-Smith model and the k-e model for obtaining the solution of two-dimensional incompressible turbulent flows without separation is discussed in detail and is presented in the accompanying CD.
Download or read book Turbulence in Porous Media written by Marcelo J.S. de Lemos and published by Elsevier. This book was released on 2006-07-11 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Turbulence in Porous Media' introduces the reader to the characterisation of turbulent flow, heat and mass transfer in permeable media, including analytical data and a review of available experimental data. Such transport processes occurring a relatively high velocity in permeable media, are present in a number of engineering and natural flows. De Lemos has managed to compile, detail, compare and evaluate available methodologies for modelling simulating purposes, providing an essential tour for engineering students working within the field.- The hotly debated topic of heterogeneity and flow turbulence has never before been addressed in book format. - Offers an experimental approach to turbulence in porous media as it discusses disciplines that have been traditionally developed apart from each other.The hotly debated topic of heterogeneity and flow turbulence has never before been addressed in book format.Offers an experimental approach to turbulence in porous media as it discusses disciplines that have been traditionally developed apart from each other.
Download or read book Filtering Techniques for Turbulent Flow Simulation written by Alvaro A. Aldama and published by Springer Science & Business Media. This book was released on 2013-03-08 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. 1 Scope of the Study The detailed and reasonably accurate computation of large scale turbulent flows has become increasingly important in geophysical and engi neering applications in recent years. The definition of water quality management policies for reservoirs, lakes, estuaries, and coastal waters, as well as the design of cooling ponds and solar ponds, requires an ade quate quantitative description of turbulent flows. When the diffusion of some tracer (be it active, such as temperature or salinity, or passive, such as dissolved oxygen) is of relevance to a specific application, the proper determination of the effects of turbulent transport processes has paramount importance. Thus, for instance, the proper understanding of lake and reservoir dynamics requires, as a first step, the ability to simulate turbulent flows. Applications in other areas of geophysical research, such as meteorology and oceanography are easily identified and large in number. It should be stressed that, in this context, the analyst seeks predictive ability to a certain extent. Accordingly, the need for simulation models that closely resemble the natural processes to be repre sented has recently become more evident. Since the late 1960s considerable effort has been devoted to the development of models for the simulation of complex turbulent flows. This has resulted in the establishment of two approaches which have been, or 2 have the potential for being, applied to problems of engineering and geophysical interest.
Download or read book Turbulence written by Peter Davidson and published by Oxford University Press, USA. This book was released on 2015 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an advanced textbook on the subject of turbulence, and is suitable for engineers, physical scientists and applied mathematicians. The aim of the book is to bridge the gap between the elementary accounts of turbulence found in undergraduate texts, and the more rigorous monographs on the subject. Throughout, the book combines the maximum of physical insight with the minimum of mathematical detail. Chapters 1 to 5 may be appropriate as background material for an advanced undergraduate or introductory postgraduate course on turbulence, while chapters 6 to 10 may be suitable as background material for an advanced postgraduate course on turbulence, or act as a reference source for professional researchers. This second edition covers a decade of advancement in the field, streamlining the original content while updating the sections where the subject has moved on. The expanded content includes large-scale dynamics, stratified & rotating turbulence, the increased power of direct numerical simulation, two-dimensional turbulence, Magnetohydrodynamics, and turbulence in the core of the Earth
Download or read book Modelling Turbulence in Engineering and the Environment written by Kemal Hanjalić and published by Cambridge University Press. This book was released on 2011-10-20 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive account of advanced RANS turbulence models including numerous applications to complex flows in engineering and the environment.
Download or read book The Method of Volume Averaging written by S. Whitaker and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiphase systems dominate nearly every area of science and technology, and the method of volume averaging provides a rigorous foundation for the analysis of these systems. The development is based on classical continuum physics, and it provides both the spatially smoothed equations and a method of predicting the effective transport coefficients that appear in those equations. The text is based on a ten-week graduate course that has been taught for more than 20 years at the University of California at Davis and at other universities around the world. Problems dealing with both the theoretical foundations and the applications are included with each chapter, and detailed solutions for all problems are available from the author. The course has attracted participants from chemical engineering, mechanical engineering, civil engineering, hydrologic science, mathematics, chemistry and physics.
Download or read book Lattice Boltzmann Modeling of Complex Flows for Engineering Applications written by Andrea Montessori and published by Morgan & Claypool Publishers. This book was released on 2018-02-20 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nature continuously presents a huge number of complex and multi-scale phenomena, which in many cases, involve the presence of one or more fluids flowing, merging and evolving around us. Since its appearance on the surface of Earth, Mankind has tried to exploit and tame fluids for their purposes, probably starting with Hero's machinery to open the doors of the Temple of Serapis in Alexandria to arrive to modern propulsion systems and actuators. Today we know that fluid mechanics lies at the basis of countless scientific and technical applications from the smallest physical scales (nanofluidics, bacterial motility, and diffusive flows in porous media), to the largest (from energy production in power plants to oceanography and meteorology). It is essential to deepen the understanding of fluid behaviour across scales for the progress of Mankind and for a more sustainable and efficient future. Since the very first years of the Third Millennium, the Lattice Boltzmann Method (LBM) has seen an exponential growth of applications, especially in the fields connected with the simulation of complex and soft matter flows. LBM, in fact, has shown a remarkable versatility in different fields of applications from nanoactive materials, free surface flows, and multiphase and reactive flows to the simulation of the processes inside engines and fluid machinery. LBM is based on an optimized formulation of Boltzmann's Kinetic Equation, which allows for the simulation of fluid particles, or rather quasi-particles, from a mesoscopic point of view thus allowing the inclusion of more fundamental physical interactions in respect to the standard schemes adopted with Navier-Stokes solvers, based on the continuum assumption. In this book, the authors present the most recent advances of the application of the LBM to complex flow phenomena of scientific and technical interest with particular focus on the multi-scale modeling of heterogeneous catalysis within nano-porous media and multiphase, multicomponent flows.
Download or read book Convection in Porous Media written by D.A. Nield and published by Springer Science & Business Media. This book was released on 2006-12-06 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition includes nearly 1000 new references.
Download or read book Turbulent Impinging Jets into Porous Materials written by Marcelo J.S. de Lemos and published by Springer Science & Business Media. This book was released on 2012-04-23 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: This short book deals with the mathematical modeling of jets impinging porous media. It starts with a short introduction to models describing turbulences in porous media as well as turbulent heat transfer. In its main part, the book presents the heat transfer of impinging jets using a local and a non-local thermal equilibrium approach.
Download or read book Modelling Fluid Flow written by János Vad and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modelling Fluid Flow presents invited lectures, workshop summaries and a selection of papers from a recent international conference CMFF '03 on fluid technology. The lectures follow the current evolution and the newest challenges of the computational methods and measuring techniques related to fluid flow. The workshop summaries reflect the recent trends, open questions and unsolved problems in the mutually inspiring fields of experimental and computational fluid mechanics. The papers cover a wide range of fluids engineering, including reactive flow, chemical and process engineering, environmental fluid dynamics, turbulence modelling, numerical methods, and fluid machinery.
Download or read book Convection in Porous Media written by Donald A. Nield and published by Springer. This book was released on 2017-03-15 with total page 1005 pages. Available in PDF, EPUB and Kindle. Book excerpt: This updated edition of a widely admired text provides a user-friendly introduction to the field that requires only routine mathematics. The book starts with the elements of fluid mechanics and heat transfer, and covers a wide range of applications from fibrous insulation and catalytic reactors to geological strata, nuclear waste disposal, geothermal reservoirs, and the storage of heat-generating materials. As the standard reference in the field, this book will be essential to researchers and practicing engineers, while remaining an accessible introduction for graduate students and others entering the field. The new edition features 2700 new references covering a number of rapidly expanding fields, including the heat transfer properties of nanofluids and applications involving local thermal non-equilibrium and microfluidic effects.
Download or read book Convective Heat Transfer in Porous Media written by Yasser Mahmoudi and published by CRC Press. This book was released on 2019-11-06 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on heat transfer in porous media, this book covers recent advances in nano and macro’ scales. Apart from introducing heat flux bifurcation and splitting within porous media, it highlights two-phase flow, nanofluids, wicking, and convection in bi-disperse porous media. New methods in modeling heat and transport in porous media, such as pore-scale analysis and Lattice–Boltzmann methods, are introduced. The book covers related engineering applications, such as enhanced geothermal systems, porous burners, solar systems, transpiration cooling in aerospace, heat transfer enhancement and electronic cooling, drying and soil evaporation, foam heat exchangers, and polymer-electrolyte fuel cells.