EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computational Topology for Data Analysis

Download or read book Computational Topology for Data Analysis written by Tamal Krishna Dey and published by Cambridge University Press. This book was released on 2022-03-10 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.

Book Topology for Computing

    Book Details:
  • Author : Afra J. Zomorodian
  • Publisher : Cambridge University Press
  • Release : 2005-01-10
  • ISBN : 9781139442633
  • Pages : 264 pages

Download or read book Topology for Computing written by Afra J. Zomorodian and published by Cambridge University Press. This book was released on 2005-01-10 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: The emerging field of computational topology utilizes theory from topology and the power of computing to solve problems in diverse fields. Recent applications include computer graphics, computer-aided design (CAD), and structural biology, all of which involve understanding the intrinsic shape of some real or abstract space. A primary goal of this book is to present basic concepts from topology and Morse theory to enable a non-specialist to grasp and participate in current research in computational topology. The author gives a self-contained presentation of the mathematical concepts from a computer scientist's point of view, combining point set topology, algebraic topology, group theory, differential manifolds, and Morse theory. He also presents some recent advances in the area, including topological persistence and hierarchical Morse complexes. Throughout, the focus is on computational challenges and on presenting algorithms and data structures when appropriate.

Book String Topology and Cyclic Homology

Download or read book String Topology and Cyclic Homology written by Ralph L. Cohen and published by Springer Science & Business Media. This book was released on 2006-03-21 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores string topology, Hochschild and cyclic homology, assembling material from a wide scattering of scholarly sources in a single practical volume. The first part offers a thorough and elegant exposition of various approaches to string topology and the Chas-Sullivan loop product. The second gives a complete and clear construction of an algebraic model for computing topological cyclic homology.

Book Persistence Theory  From Quiver Representations to Data Analysis

Download or read book Persistence Theory From Quiver Representations to Data Analysis written by Steve Y. Oudot and published by American Mathematical Soc.. This book was released on 2017-05-17 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Persistence theory emerged in the early 2000s as a new theory in the area of applied and computational topology. This book provides a broad and modern view of the subject, including its algebraic, topological, and algorithmic aspects. It also elaborates on applications in data analysis. The level of detail of the exposition has been set so as to keep a survey style, while providing sufficient insights into the proofs so the reader can understand the mechanisms at work. The book is organized into three parts. The first part is dedicated to the foundations of persistence and emphasizes its connection to quiver representation theory. The second part focuses on its connection to applications through a few selected topics. The third part provides perspectives for both the theory and its applications. The book can be used as a text for a course on applied topology or data analysis.

Book The Local Structure of Algebraic K Theory

Download or read book The Local Structure of Algebraic K Theory written by Bjørn Ian Dundas and published by Springer Science & Business Media. This book was released on 2012-09-06 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's calculations of finite fields and Suslin's calculation of algebraically closed fields, few complete calculations were available before the discovery of homological invariants offered by motivic cohomology and topological cyclic homology. This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. The book is intended for graduate students and scientists interested in algebraic K-theory, and presupposes a basic knowledge of algebraic topology.

Book Lectures on Factorization Homology      Categories  and Topological Field Theories

Download or read book Lectures on Factorization Homology Categories and Topological Field Theories written by Hiro Lee Tanaka and published by Springer Nature. This book was released on 2020-12-14 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an informal and geodesic introduction to factorization homology, focusing on providing intuition through simple examples. Along the way, the reader is also introduced to modern ideas in homotopy theory and category theory, particularly as it relates to the use of infinity-categories. As with the original lectures, the text is meant to be a leisurely read suitable for advanced graduate students and interested researchers in topology and adjacent fields.

Book A Basic Course in Algebraic Topology

Download or read book A Basic Course in Algebraic Topology written by William S. Massey and published by Springer. This book was released on 2019-06-28 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is intended for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. These topics are developed systematically, avoiding all unnecessary definitions, terminology, and technical machinery. The text consists of material from the first five chapters of the author's earlier book, Algebraic Topology; an Introduction (GTM 56) together with almost all of his book, Singular Homology Theory (GTM 70). The material from the two earlier books has been substantially revised, corrected, and brought up to date.

Book Topological Persistence in Geometry and Analysis

Download or read book Topological Persistence in Geometry and Analysis written by Leonid Polterovich and published by American Mathematical Soc.. This book was released on 2020-05-11 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of persistence modules originated in topological data analysis and became an active area of research in algebraic topology. This book provides a concise and self-contained introduction to persistence modules and focuses on their interactions with pure mathematics, bringing the reader to the cutting edge of current research. In particular, the authors present applications of persistence to symplectic topology, including the geometry of symplectomorphism groups and embedding problems. Furthermore, they discuss topological function theory, which provides new insight into oscillation of functions. The book is accessible to readers with a basic background in algebraic and differential topology.

Book Computational Homology

    Book Details:
  • Author : Tomasz Kaczynski
  • Publisher : Springer Science & Business Media
  • Release : 2006-04-18
  • ISBN : 0387215972
  • Pages : 488 pages

Download or read book Computational Homology written by Tomasz Kaczynski and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homology is a powerful tool used by mathematicians to study the properties of spaces and maps that are insensitive to small perturbations. This book uses a computer to develop a combinatorial computational approach to the subject. The core of the book deals with homology theory and its computation. Following this is a section containing extensions to further developments in algebraic topology, applications to computational dynamics, and applications to image processing. Included are exercises and software that can be used to compute homology groups and maps. The book will appeal to researchers and graduate students in mathematics, computer science, engineering, and nonlinear dynamics.

Book Elementary Concepts of Topology

Download or read book Elementary Concepts of Topology written by Paul Alexandroff and published by Courier Corporation. This book was released on 2012-08-13 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise work presents topological concepts in clear, elementary fashion, from basics of set-theoretic topology, through topological theorems and questions based on concept of the algebraic complex, to the concept of Betti groups. Includes 25 figures.

Book An Introduction to Homological Algebra

Download or read book An Introduction to Homological Algebra written by Charles A. Weibel and published by Cambridge University Press. This book was released on 1995-10-27 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.

Book Hochschild Cohomology for Algebras

Download or read book Hochschild Cohomology for Algebras written by Sarah J. Witherspoon and published by American Mathematical Soc.. This book was released on 2019-12-10 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a thorough and self-contained introduction to the theory of Hochschild cohomology for algebras and includes many examples and exercises. The book then explores Hochschild cohomology as a Gerstenhaber algebra in detail, the notions of smoothness and duality, algebraic deformation theory, infinity structures, support varieties, and connections to Hopf algebra cohomology. Useful homological algebra background is provided in an appendix. The book is designed both as an introduction for advanced graduate students and as a resource for mathematicians who use Hochschild cohomology in their work.

Book Fundamental Groups and Covering Spaces

Download or read book Fundamental Groups and Covering Spaces written by Elon Lages Lima and published by CRC Press. This book was released on 2003-07-22 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory textbook describes fundamental groups and their topological soul mates, the covering spaces. The author provides several illustrative examples that touch upon different areas of mathematics, but in keeping with the books introductory aim, they are all quite elementary. Basic concepts are clearly defined, proofs are complete, and n

Book Topology II

    Book Details:
  • Author : D.B. Fuchs
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-09
  • ISBN : 3662105810
  • Pages : 264 pages

Download or read book Topology II written by D.B. Fuchs and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two top experts in topology, O.Ya. Viro and D.B. Fuchs, give an up-to-date account of research in central areas of topology and the theory of Lie groups. They cover homotopy, homology and cohomology as well as the theory of manifolds, Lie groups, Grassmanians and low-dimensional manifolds. Their book will be used by graduate students and researchers in mathematics and mathematical physics.

Book Algebraic Topology  An Intuitive Approach

Download or read book Algebraic Topology An Intuitive Approach written by Hajime Satō and published by American Mathematical Soc.. This book was released on 1999 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: The single most difficult thing one faces when one begins to learn a new branch of mathematics is to get a feel for the mathematical sense of the subject. The purpose of this book is to help the aspiring reader acquire this essential common sense about algebraic topology in a short period of time. To this end, Sato leads the reader through simple but meaningful examples in concrete terms. Moreover, results are not discussed in their greatest possible generality, but in terms of the simplest and most essential cases. In response to suggestions from readers of the original edition of this book, Sato has added an appendix of useful definitions and results on sets, general topology, groups and such. He has also provided references. Topics covered include fundamental notions such as homeomorphisms, homotopy equivalence, fundamental groups and higher homotopy groups, homology and cohomology, fiber bundles, spectral sequences and characteristic classes. Objects and examples considered in the text include the torus, the Möbius strip, the Klein bottle, closed surfaces, cell complexes and vector bundles.

Book Counterexamples in Topology

Download or read book Counterexamples in Topology written by Lynn Arthur Steen and published by Courier Corporation. This book was released on 2013-04-22 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 140 examples, preceded by a succinct exposition of general topology and basic terminology. Each example treated as a whole. Numerous problems and exercises correlated with examples. 1978 edition. Bibliography.

Book Topological Methods in Group Theory

Download or read book Topological Methods in Group Theory written by Ross Geoghegan and published by Springer Science & Business Media. This book was released on 2007-12-17 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about the interplay between algebraic topology and the theory of infinite discrete groups. It is a hugely important contribution to the field of topological and geometric group theory, and is bound to become a standard reference in the field. To keep the length reasonable and the focus clear, the author assumes the reader knows or can easily learn the necessary algebra, but wants to see the topology done in detail. The central subject of the book is the theory of ends. Here the author adopts a new algebraic approach which is geometric in spirit.