EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Thermo Mechanically Coupled Cyclic Deformation and Fatigue Failure of NiTi Shape Memory Alloys

Download or read book Thermo Mechanically Coupled Cyclic Deformation and Fatigue Failure of NiTi Shape Memory Alloys written by Guozheng Kang and published by Springer Nature. This book was released on 2023-07-24 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by leading experts in the field, this book highlights an authoritative and comprehensive introduction to thermo-mechanically coupled cyclic deformation and fatigue failure of shape memory alloys. The book deals with: (1) experimental observations on the cyclic deformation and fatigue failure in the macroscopic and microscopic scales; (2) molecular dynamics and phase-field simulations for the thermo-mechanical behaviors and underlying mechanisms during cyclic deformation; (3) macroscopic phenomenological and crystal plasticity-based cyclic constitutive models; and (4) fatigue failure models. This book is an important reference for students, practicing engineers and researchers who study shape memory alloys in the areas of mechanical, civil and aerospace engineering as well as materials science.

Book Shape Memory Alloy Engineering

Download or read book Shape Memory Alloy Engineering written by Antonio Concilio and published by Butterworth-Heinemann. This book was released on 2021-01-13 with total page 936 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shape Memory Alloy Engineering: For Aerospace, Structural and Biomedical Applications, Second Edition embraces new advancements in materials, systems and applications introduced since the first edition. Readers will gain an understanding of the intrinsic properties of SMAs and their characteristic state diagrams. Sections address modeling and design process aspects, explore recent applications, and discuss research activities aimed at making new devices for innovative implementations. The book discusses both the potential of these fascinating materials, their limitations in everyday life, and tactics on how to overcome some limitations in order to achieve proper design of useful SMA mechanisms. Provides a greatly expanded scope, looking at new applications of SMA devices and current research activities Covers all aspects of SMA technology - from a global state-of-the-art survey, to the classification of existing materials, basic material design, material manufacture, and from device engineering design to implementation within actual systems Presents the material within a modular architecture over different topics, from material conception to practical engineering realization

Book Effects of Thermo mechanical Treatment on the Shape Memory Behavior of NiTi and CoNiAl Alloys

Download or read book Effects of Thermo mechanical Treatment on the Shape Memory Behavior of NiTi and CoNiAl Alloys written by Haluk Ersin Karaca and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Nickel-Titanium (NiTi) shape memory alloys have been the focus of extensive research due to its unique characteristics such as high recoverable strain and ductility. However, solutionized samples of NiTi do not demonstrate good shape memory characteristics due to low strength for dislocation slip. Thermo-mechanical treatments are required to strengthen the matrix and improve the shape memory characteristics. Plastic deformation and the subsequent annealing is the common way to improve shape memory properties. In this case, deformation magnitude, temperature, rate, mechanism, and annealing temperature and time are all important parameters for the final shape memory properties. Equal channel angular extrusion (ECAE) is a well-known technique to severely deform materials by simple shear with no change in cross-section. In this study, Ti- 49.8 at% Ni samples are deformed by ECAE at three different temperatures near transformation temperatures. X-ray analysis, calorimetry, transmission electron microscopy and thermo-mechanical cycling techniques are utilized to investigate the effects of severe deformation and subsequent annealing treatment on shape memory properties. Martensite stabilization, formation of strain induced B2 phase, change in transformation temperatures, formation of new phases, recrystallization temperature, texture formation, and increase in strength and pseudoelastic strain are the main findings of this study. Co-32.9 at% Ni-29.5 at% Al is a newly found ferromagnetic alloy. Its low density, high melting temperature and cheap constituents make the alloy advantageous among other shape memory alloys. Although some magnetic properties of this alloy are known, there is no report on basic shape memory characteristics of CoNiAl. In this study, effect of thermo-mechanical treatments on the microstructure and shape memory characteristics such as transformation behavior, pseudoelasticity, stages of transformation, temperature dependence of the pseudoelasticity, response to thermal and stress cycling is investigated. Formation of second phase along the grain boundaries and inside the grains, about 4% pseudoelastic and two-way shape memory strain, very narrow stress hysteresis, large pseudoelastic window (>150ʻC), two-stage martensitic transformation, stable response to cyclic deformation, high strength for dislocation slip, slope of Clasius-Clapeyron curve, and twinning plane are determined for the first time in literature.

Book Shape Memory Alloys

Download or read book Shape Memory Alloys written by Corneliu Cismasiu and published by BoD – Books on Demand. This book was released on 2010-10-18 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last decades, the Shape Memory Alloys, with their peculiar thermo-mechanical properties, high corrosion and extraordinary fatigue resistance, have become more popular in research and engineering applications. This book contains a number of relevant international contributions related to their properties, constitutive models and numerical simulation, medical and civil engineering applications, as well as aspects related to their processing.

Book Cyclic Deformation Behavior of NiTi Shape Memory Alloys at Microscale

Download or read book Cyclic Deformation Behavior of NiTi Shape Memory Alloys at Microscale written by Peng Hua and published by . This book was released on 2019 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Shape Memory Alloys

Download or read book Shape Memory Alloys written by M. Fremond and published by Springer. This book was released on 2014-05-04 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of two chapters. The first chapter deals with the thermomechanical macroscopic theory describing the transformation and deformation behavior of shape memory alloys. The second chapter deals with the extensive and fundamental review of the experimental works which include crystallography, transformations and mechanical characteristics in Ti-Ni, Cu-base and ferrous shape memory alloys.

Book Niti based Shape Memory Alloys

Download or read book Niti based Shape Memory Alloys written by Asheesh Lanba and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This work aims to experimentally establish processing-structure-property relationships in wide-hysteresis NiTiNb shape memory alloys. Manufactures supplied custom composition cast materials and off-the-shelf deformation processed (i.e. small diameter rods and thin sheets) NiTiNb alloys, and thus different extents of processing are studied. Microstructure characterization of these materials highlights the impact of processing on micro-constituent morphology. Thermo-mechanical experiments are conducted in order to contrast the mechanical and shape memory properties. Micro-deformation measurements are employed to visualize strain localization associated with the differently processed microstructures. Mechanistic and phenomenological rationale are developed that correlate the micro-constituent morphology and its interaction with the underlying martensitic phase transformation to the mechanical and shape memory behavior.The cast and deformation-processed NiTiNb microstructures are characterized via electron and acoustic microscopy. The microstructures are also altered via annealing. The cast microstructure reveals that the addition of Nb as a ternary element in NiTi results in a microstructure with [beta] particles which are primarily Nb in a eutectic mixture with the [alpha] NiTi(Nb) phase. The eutectic mixture is cellular-like with areas of [alpha] NiTi(Nb) matrix material in between. The martensitic transformation, which is a reversible diffusionless crystallographic phase change that can be thermally- or stress-induced between a high temperature austenitic phase and low temperature martensitic phase, only takes place in this matrix. Two different deformation-processed alloys are studied; a rolled sheet and an extruded rod. Deformation-processing breaks up the eutectic structure resulting in a composite microstructure with discontinuous aligned second phase Nb-rich [beta]-particle reinforcements. Annealing causes the Nb-rich particles to grow, and also increases the inter-particle spacing in both cast and deformation processed alloys.The shape memory behavior, characterized via thermal cycling with and without an external stress, and the mechanical properties, characterized from isothermal deformation to failure at different temperatures, are contrasted for cast and deformation-processed microstructures. The stress-free thermal cycling allows us to establish the characteristic transformation temperatures along with the elastic and irreversible energies associated with the transformation. Thermal cycling under load is used to characterize the transformation temperatures, thermal hysteresis, and the recoverable and permanent deformations. The isothermal deformation is used to contrast the stress-induced transformation and subsequent plastic deformation using the critical transformation stress and strain, elastic moduli, yield stress, and strain at failure. The work finds the experimental evidence correlating strain energy relaxation and widening of hysteresis and reverse transformation temperature interval.This comparative study between the cast and deformation processed alloys is augmented by undertaking a multi-scale deformation analysis including digital image correlation to measure micro-scale strain localizations. The strain localizations are characterized in-situ, and allow the comparison of the impact of different micro-constituents on the evolution of localized deformations during the stress-induced transformation and shape memory recovery. Localized regions of high strain accompany the stress-induced transformation in cast alloys that lead to fracture, whereas the stress-induced transformation region in processed alloys has no such strain concentrations.The micro-constituent morphology in both the cast and deformation-processed alloys cause martensite stabilization, however the deformation processed microstructure promotes larger irreversibility and shows evidence of strain energy relaxation that is missing in cast alloys. The eutectic boundaries in the cast microstructure likely prohibit interaction of the martensitic transformation with the particles, and promote large strain localizations during the stress-induced transformation. Such boundaries are missing in the deformation-processed composite microstructure, and thus the particles interact more with the martensitic transformation that leads to the larger irreversibility, improved ductility and better mechanical properties.

Book Cyclic Plasticity of Engineering Materials

Download or read book Cyclic Plasticity of Engineering Materials written by Guozheng Kang and published by John Wiley & Sons. This book was released on 2017-05-01 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: New contributions to the cyclic plasticity of engineering materials Written by leading experts in the field, this book provides an authoritative and comprehensive introduction to cyclic plasticity of metals, polymers, composites and shape memory alloys. Each chapter is devoted to fundamentals of cyclic plasticity or to one of the major classes of materials, thereby providing a wide coverage of the field. The book deals with experimental observations on metals, composites, polymers and shape memory alloys, and the corresponding cyclic plasticity models for metals, polymers, particle reinforced metal matrix composites and shape memory alloys. Also, the thermo-mechanical coupled cyclic plasticity models are discussed for metals and shape memory alloys. Key features: Provides a comprehensive introduction to cyclic plasticity Presents Macroscopic and microscopic observations on the ratchetting of different materials Establishes cyclic plasticity constitutive models for different materials. Analysis of cyclic plasticity in engineering structures. This book is an important reference for students, practicing engineers and researchers who study cyclic plasticity in the areas of mechanical, civil, nuclear, and aerospace engineering as well as materials science.

Book Shape Memory Alloy Actuators

Download or read book Shape Memory Alloy Actuators written by Mohammad H. Elahinia and published by John Wiley & Sons. This book was released on 2016-01-19 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic approach to realizing NiTi shape memory alloy actuation, and is aimed at science and engineering students who would like to develop a better understanding of the behaviors of SMAs, and learn to design, simulate, control, and fabricate these actuators in a systematic approach. Several innovative biomedical applications of SMAs are discussed. These include orthopedic, rehabilitation, assistive, cardiovascular, and surgery devices and tools. To this end unique actuation mechanisms are discussed. These include antagonistic bi-stable shape memory-superelastic actuation, shape memory spring actuation, and multi axial tension-torsion actuation. These actuation mechanisms open new possibilities for creating adaptive structures and biomedical devices by using SMAs.

Book Shape Memory Alloys

    Book Details:
  • Author : Francisco Manuel Braz Fernandes
  • Publisher : BoD – Books on Demand
  • Release : 2013-04-03
  • ISBN : 9535110845
  • Pages : 294 pages

Download or read book Shape Memory Alloys written by Francisco Manuel Braz Fernandes and published by BoD – Books on Demand. This book was released on 2013-04-03 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shape memory alloys have become in the past decades a well established research subject. However, the complex relations between properties and structure have created a continuously growing interest for a deeper insight all this time. The complexity of relationships between structure and properties is mostly related to the fact that strong ?multidimensional? interactions are taking place: from the early studies focusing on the thermal and/or mechanical induced phase transformations to the more recent findings on the magnetically induced structural changes. On the other hand, these singular behavioral characteristics have driven a great industrial interest due to the innovative aspects that the applications of shape memory alloys may provide. This makes this subject a highly attractive source of continuous studies, ranging from basics crystallography and thermodynamics to mechanical analysis and electrical and magnetic properties characterization. In this book, a group of recent studies is compiled focusing on a wide range of topics from processing to the relationship between the structure and properties, as well as new applications.

Book Laser Processing  Thermomechanical Processing  and Thermomechanical Fatigue of NiTi Shape Memory Alloys

Download or read book Laser Processing Thermomechanical Processing and Thermomechanical Fatigue of NiTi Shape Memory Alloys written by Boyd Panton and published by . This book was released on 2016 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: NiTi shape memory alloys (SMAs) have revolutionized engineering design across all industries, with major contributions in the medical, aerospace, and automotive industries. These fascinating materials possess the shape memory effect, pseudoelastic effect and biocompatibility, which make them so highly desired. Since their discovery mid-way through the 20th century a large research effort has been underway to gain fundamental understanding of the mechanisms responsible for their properties. The material properties depend on a large number of variables including the microstructure, the texture, the stress/strain state, and the temperature. An understanding of the interdependence of these variables is still being developed, with particular focus on their evolution when either multi-axial loading, or fatigue cycling are applied to the material. Furthermore, the advanced manufacturing techniques required to properly process NiTi have only recently become a reality, with further advancements being developed to continue pushing the limits of these materials. One limitation of NiTi is that standard manufactured products have only one transformation temperature. A number of techniques have been developed in an attempt to address this limitation and increase the functionality of SMAs. A highly accurate and repeatable technique was recently developed that uses a high energy density process (e.g. laser) to alter the composition of NiTi in localized regions. Laser processing enables the tailoring of different regions of a single piece of NiTi to have different transformation properties. However, there have been no in-depth studies of the evolution of the properties of these laser processed materials over multiple mechanical or thermal cycles. This lack of fundamental knowledge significantly limits both the understanding and possibilities for the application of laser processed NiTi. In addition to this limitation, the most widely used form of NiTi SMA is wires, but the major studies on laser processing have focused on sheets. Investigation of the evolution of laser processed NiTi wires over multiple mechanical or thermal cycles would not only benefit laser processing technologies, but it would also improve the general understanding of SMAs, with benefits to other areas including other local processing techniques, welding and joining, mechanical and thermomechanical fatigue. The current study investigated the evolution of the properties of laser processed NiTi when the materials were subjected to thermal cycling, mechanical cycling, and fatigue cycling. The knowledge gained was used to identify limitations in the current technology, and develop thermomechanical treatments to address these limitations. The first part of the investigation focused on a wire that had a single laser processed spot (i.e. a laser weld). Few investigations have been attempted to characterize the mechanical fatigue properties of NiTi joints, and to the author's knowledge there have been no previous investigations on the thermomechanical fatigue properties of these joints. The current work investigated the thermomechanical fatigue properties of Nd:YAG pulsed laser welded, and post-weld heat treated NiTi wires. The welded wires maintained over 86 % of the base metal ultimate tensile strength; however, they had reduced actuation stability and stroke, and had significantly reduced cycle life. Use of a post-weld heat treatment successfully increased both the actuation stability and the cycle life by an order of magnitude compared to the welded wires. The second part of the investigation focused on the development and characterization of laser processing techniques for NiTi wires. The process altered the composition of the NiTi wire with a reduction of 0.23 at.% Ni for each laser pulse after the first pulse. The first laser pulse removed 0.40 at.% Ni, which was a larger amount than the following pulses, because the wire drawn surface finish was less reflective than the laser processed surface. The coarse grained laser processed NiTi had 71 % of the base metal ultimate tensile strength, 40 % of the base metal ductility, significant reduction in the stability of the shape memory properties, and an almost complete loss of the fatigue life of the base metal. Using the fundamental knowledge gained from this investigation a thermomechanical treatment was developed to improve the properties of the laser processed NiTi. The treated laser processed NiTi had an ultimate tensile strength matching the base metal and a ductility 70 % greater than the laser processed NiTi. Significant improvement to the shape memory properties were achieved, with a return of pseudoelasticity, and an 80% greater shape memory recovery than the untreated laser processed NiTi. Furthermore the low strain (i.e. 2%) thermomechanical fatigue lives of the treated laser processed NiTi were equal to the base metal. Finally, actuators were developed with two distinct memories, with the treated actuator having 33 % lower plastic strain, and 42 % greater shape memory recovery than the untreated actuator. This technology was exploited to develop a self-biasing actuator. A shape memory alloy (SMA) actuator that is biased internally (i.e. self-biasing) would not need an external bias to achieve multiple actuation cycles. This would reduce cost, complexity and weight compared to standard one-way SMAs. The self-biasing actuators that have been developed to date have a lack of geometric and actuation stability. The current study developed a self-biasing NiTi actuator using a laser based vaporization process to alter the bulk composition of a NiTi wire. The martensitic laser processed NiTi region was the actuator, and un-processed austenitic base metal region was the internal bias. It was discovered that the laser processed region of the self-biasing actuator was unstable during high stress thermomechanical cycling due to the coarse grained microstructure. Cold-working of the half martensitic and half austenitic component resulted in similar deformation characteristics to single phase NiTi, which enabled the formation of a uniform nanocrystalline microstructure in both regions. When thermomechanically cycled 6000 times under stresses ranging from 180 to 400 MPa, it was discovered that this treated self-biasing actuator exhibited the stabilization behaviour of traditional one-way actuators. This behaviour was due to the uniform nanocrystalline microstructure, which impeded dislocation activity and ensured minimal plastic deformation.

Book Mechanics of Composite  Hybrid and Multifunctional Materials  Fracture  Fatigue  Failure and Damage Evolution  Volume 3

Download or read book Mechanics of Composite Hybrid and Multifunctional Materials Fracture Fatigue Failure and Damage Evolution Volume 3 written by Vijay Chalivendra and published by Springer Nature. This book was released on 2022-01-01 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanics of Composite, Hybrid, and Multifunctional Materials, Fracture, Fatigue, Failure and Damage Evolution, Volume 3 of the Proceedings of the 2021 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the third volume of four from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Recycled Constituent Composites Damage Detection Advanced Imaging of Composites Multifunctional Materials Composite Interfaces Tunable Composites Novel Experimental Methods Extreme Environments Interfacial Fracture Integration of Models & Experiments Mechanics of Energy & Energetic Materials Integration of Models & Experiments In Situ Techniques for Fatigue & Fracture Microscale & Microstructural Effects on Mechanical Behavior

Book Anisotropic Behaviour of Damaged Materials

Download or read book Anisotropic Behaviour of Damaged Materials written by Jacek Skrzypek and published by Springer Science & Business Media. This book was released on 2003-03-24 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scope of this book is based on the keynote lectures delivered during the Inter national Symposium on Anisotropic Behaviour of Damaged Materials ABDM, held in Krakow-Przegorzaiy, Poland, September 9-11, 2002. The Symposium was organized by the Solid Mechanics Division of the Institute of Mechanics and Machine Design - Cracow University of Technology, under aus pices of the Dean of the Faculty of Mechanical Engineering, Cracow University of Technology, Prof. S. Michalowski. The Co-organizers of the ABDM Symposium were: • Martin-Luther-Universitat Halle-Wittenberg, • Centre of Excellence for Advanced Materials and Structures AMAS at the In stitute of Fundamental Technological Research of the Polish Academy of Sci ences, Warsaw, • Committee of Mechanics of the Polish Academy of Sciences, Warsaw. Ten chapters of this book in their present form essentially exceed lectures de livered at the Symposium. They should rather be read as not only author's recent achievements in the field, but also the state of art and synthesis done by the lead ers in the mechanics community. The mixed formula of the Symposium, namely: the invited lectures and presentations of the original papers by the participants was used. 23 original papers, published in the Symposium Proceedings on CD, exhaust the full scope of the ABDM Symposium. The present book provides a survey of various damage models focusing on the damage response in anisotropic materials as well as damage-induced anisotropy.

Book Fatigue Behavior and Modeling of Superelastic NiTi Under Variable Amplitude Loading

Download or read book Fatigue Behavior and Modeling of Superelastic NiTi Under Variable Amplitude Loading written by Mohammad Javad Mahtabi Oghani and published by . This book was released on 2017 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: NiTi (also known as Nitinol) is an almost equiatomic alloy of nickel and titanium and has many applications in various industries, such as biomedical, automotive, and aerospace. NiTi shape memory alloys undergo martensitic phase transformations under both thermal and mechanical loading and exhibit unique properties, such as superelasticity (SE) and shape memory effects (SME). Modeling the fatigue behavior of this alloy is very challenging due to the unique mechanical response of the material. Moreover, there are very limited studies on the fatigue behavior of this alloy under more realistic loading conditions, such as variable amplitude loading and multiaxial loading. In this study, strain-controlled cyclic experiments have been conducted in different conditions to study the variable amplitude fatigue behavior of superelastic NiTi. Nonzero mean strain/stress behavior of superelastic NiTi is investigated, and it is demonstrated that the classical fatigue models for mean strain/stress correction do not appropriately model the nonzero mean strain/stress fatigue behavior of superelastic NiTi. It is shown that, despite common metals (e.g., steel, aluminum, and titanium alloys), mean strain also affects the fatigue behavior of superelastic NiTi, as the resulting mean stress does not fully relax under cyclic load. Two energy-based fatigue models have been proposed based on the results in this study and provide acceptable correlation with experimental observations. The models proposed in this research, account for the effects of mean strain/stress and variations in cyclic deformation. The variations in the cyclic deformation can be due to several factors, such as slight changes in chemical composition, heat treatment processes, texture, etc. The predicted fatigue lives using the proposed fatigue model fall within scatter bands of 1.5 times the experimental life for constant amplitude loading. Analyses also show that the proposed total fatigue toughness parameter, (sigma symbol)Wt, together with the Rainflow cycle counting technique can accurately predict the fatigue life under more realistic loading condition, such as two-step (i.e. high-low and low-high) and variable amplitude load-paths.

Book Shape Memory Alloys

    Book Details:
  • Author :
  • Publisher :
  • Release : 2010
  • ISBN : 9789535159568
  • Pages : pages

Download or read book Shape Memory Alloys written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Metals Abstracts

Download or read book Metals Abstracts written by and published by . This book was released on 1998 with total page 1042 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multiaxial Fatigue

Download or read book Multiaxial Fatigue written by Darrell Socie and published by SAE International. This book was released on 1999-12-15 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides practicing engineers, researchers, and students with a working knowledge of the fatigue design process and models under multiaxial states of stress and strain. Readers are introduced to the important considerations of multiaxial fatigue that differentiate it from uniaxial fatigue.