Download or read book Theoretical Foundations of Functional Data Analysis with an Introduction to Linear Operators written by Tailen Hsing and published by John Wiley & Sons. This book was released on 2015-05-06 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA). The self–contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self–adjoint and non self–adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis. This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course.
Download or read book Theoretical Foundations of Functional Data Analysis with an Introduction to Linear Operators written by Tailen Hsing and published by John Wiley & Sons. This book was released on 2015-03-16 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA). The self–contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self–adjoint and non self–adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis. This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course.
Download or read book Introduction to Functional Data Analysis written by Piotr Kokoszka and published by CRC Press. This book was released on 2017-09-27 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Functional Data Analysis provides a concise textbook introduction to the field. It explains how to analyze functional data, both at exploratory and inferential levels. It also provides a systematic and accessible exposition of the methodology and the required mathematical framework. The book can be used as textbook for a semester-long course on FDA for advanced undergraduate or MS statistics majors, as well as for MS and PhD students in other disciplines, including applied mathematics, environmental science, public health, medical research, geophysical sciences and economics. It can also be used for self-study and as a reference for researchers in those fields who wish to acquire solid understanding of FDA methodology and practical guidance for its implementation. Each chapter contains plentiful examples of relevant R code and theoretical and data analytic problems. The material of the book can be roughly divided into four parts of approximately equal length: 1) basic concepts and techniques of FDA, 2) functional regression models, 3) sparse and dependent functional data, and 4) introduction to the Hilbert space framework of FDA. The book assumes advanced undergraduate background in calculus, linear algebra, distributional probability theory, foundations of statistical inference, and some familiarity with R programming. Other required statistics background is provided in scalar settings before the related functional concepts are developed. Most chapters end with references to more advanced research for those who wish to gain a more in-depth understanding of a specific topic.
Download or read book Introductory Functional Analysis with Applications written by Erwin Kreyszig and published by John Wiley & Sons. This book was released on 1991-01-16 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry
Download or read book Introduction to Functional Analysis written by Christian Clason and published by Springer Nature. This book was released on 2020-11-30 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional analysis has become one of the essential foundations of modern applied mathematics in the last decades, from the theory and numerical solution of differential equations, from optimization and probability theory to medical imaging and mathematical image processing. This textbook offers a compact introduction to the theory and is designed to be used during one semester, fitting exactly 26 lectures of 90 minutes each. It ranges from the topological fundamentals recalled from basic lectures on real analysis to spectral theory in Hilbert spaces. Special attention is given to the central results on dual spaces and weak convergence.
Download or read book Functional and High Dimensional Statistics and Related Fields written by Germán Aneiros and published by Springer Nature. This book was released on 2020-06-19 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest research on the statistical analysis of functional, high-dimensional and other complex data, addressing methodological and computational aspects, as well as real-world applications. It covers topics like classification, confidence bands, density estimation, depth, diagnostic tests, dimension reduction, estimation on manifolds, high- and infinite-dimensional statistics, inference on functional data, networks, operatorial statistics, prediction, regression, robustness, sequential learning, small-ball probability, smoothing, spatial data, testing, and topological object data analysis, and includes applications in automobile engineering, criminology, drawing recognition, economics, environmetrics, medicine, mobile phone data, spectrometrics and urban environments. The book gathers selected, refereed contributions presented at the Fifth International Workshop on Functional and Operatorial Statistics (IWFOS) in Brno, Czech Republic. The workshop was originally to be held on June 24-26, 2020, but had to be postponed as a consequence of the COVID-19 pandemic. Initiated by the Working Group on Functional and Operatorial Statistics at the University of Toulouse in 2008, the IWFOS workshops provide a forum to discuss the latest trends and advances in functional statistics and related fields, and foster the exchange of ideas and international collaboration in the field.
Download or read book Perturbation theory for linear operators written by Tosio Kato and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Foundations of Data Science written by Avrim Blum and published by Cambridge University Press. This book was released on 2020-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
Download or read book Functional Analysis written by Peter D. Lax and published by John Wiley & Sons. This book was released on 2014-08-28 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes sections on the spectral resolution and spectral representation of self adjoint operators, invariant subspaces, strongly continuous one-parameter semigroups, the index of operators, the trace formula of Lidskii, the Fredholm determinant, and more. Assumes prior knowledge of Naive set theory, linear algebra, point set topology, basic complex variable, and real variables. Includes an appendix on the Riesz representation theorem.
Download or read book Functional Data Analysis with R and MATLAB written by James Ramsay and published by Springer Science & Business Media. This book was released on 2009-06-29 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an application-oriented overview of functional analysis, with extended and accessible presentations of key concepts such as spline basis functions, data smoothing, curve registration, functional linear models and dynamic systems Functional data analysis is put to work in a wide a range of applications, so that new problems are likely to find close analogues in this book The code in R and Matlab in the book has been designed to permit easy modification to adapt to new data structures and research problems
Download or read book A Course in Functional Analysis written by John B Conway and published by Springer. This book was released on 2019-03-09 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introductory text in functional analysis. Unlike many modern treatments, it begins with the particular and works its way to the more general. From the reviews: "This book is an excellent text for a first graduate course in functional analysis....Many interesting and important applications are included....It includes an abundance of exercises, and is written in the engaging and lucid style which we have come to expect from the author." --MATHEMATICAL REVIEWS
Download or read book Optimization by Vector Space Methods written by David G. Luenberger and published by John Wiley & Sons. This book was released on 1997-01-23 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.
Download or read book Statistical Analysis of Geographical Data written by Simon James Dadson and published by John Wiley & Sons. This book was released on 2017-03-08 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistics Analysis of Geographical Data: An Introduction provides a comprehensive and accessible introduction to the theory and practice of statistical analysis in geography. It covers a wide range of topics including graphical and numerical description of datasets, probability, calculation of confidence intervals, hypothesis testing, collection and analysis of data using analysis of variance and linear regression. Taking a clear and logical approach, this book examines real problems with real data from the geographical literature in order to illustrate the important role that statistics play in geographical investigations. Presented in a clear and accessible manner the book includes recent, relevant examples, designed to enhance the reader’s understanding.
Download or read book An Invitation to Statistics in Wasserstein Space written by Victor M. Panaretos and published by Springer Nature. This book was released on 2020-03-10 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book presents the key aspects of statistics in Wasserstein spaces, i.e. statistics in the space of probability measures when endowed with the geometry of optimal transportation. Further to reviewing state-of-the-art aspects, it also provides an accessible introduction to the fundamentals of this current topic, as well as an overview that will serve as an invitation and catalyst for further research. Statistics in Wasserstein spaces represents an emerging topic in mathematical statistics, situated at the interface between functional data analysis (where the data are functions, thus lying in infinite dimensional Hilbert space) and non-Euclidean statistics (where the data satisfy nonlinear constraints, thus lying on non-Euclidean manifolds). The Wasserstein space provides the natural mathematical formalism to describe data collections that are best modeled as random measures on Euclidean space (e.g. images and point processes). Such random measures carry the infinite dimensional traits of functional data, but are intrinsically nonlinear due to positivity and integrability restrictions. Indeed, their dominating statistical variation arises through random deformations of an underlying template, a theme that is pursued in depth in this monograph.
Download or read book Functional Analysis written by Terry J. Morrison and published by John Wiley & Sons. This book was released on 2011-10-14 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: A powerful introduction to one of the most active areas of theoretical and applied mathematics This distinctive introduction to one of the most far-reaching and beautiful areas of mathematics focuses on Banach spaces as the milieu in which most of the fundamental concepts are presented. While occasionally using the more general topological vector space and locally convex space setting, it emphasizes the development of the reader's mathematical maturity and the ability to both understand and "do" mathematics. In so doing, Functional Analysis provides a strong springboard for further exploration on the wide range of topics the book presents, including: * Weak topologies and applications * Operators on Banach spaces * Bases in Banach spaces * Sequences, series, and geometry in Banach spaces Stressing the general techniques underlying the proofs, Functional Analysis also features many exercises for immediate clarification of points under discussion. This thoughtful, well-organized synthesis of the work of those mathematicians who created the discipline of functional analysis as we know it today also provides a rich source of research topics and reference material.
Download or read book Linear Algebra Done Right written by Sheldon Axler and published by Springer Science & Business Media. This book was released on 1997-07-18 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
Download or read book Inference for Functional Data with Applications written by Lajos Horváth and published by Springer Science & Business Media. This book was released on 2012-05-08 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recently developed statistical methods and theory required for the application of the tools of functional data analysis to problems arising in geosciences, finance, economics and biology. It is concerned with inference based on second order statistics, especially those related to the functional principal component analysis. While it covers inference for independent and identically distributed functional data, its distinguishing feature is an in depth coverage of dependent functional data structures, including functional time series and spatially indexed functions. Specific inferential problems studied include two sample inference, change point analysis, tests for dependence in data and model residuals and functional prediction. All procedures are described algorithmically, illustrated on simulated and real data sets, and supported by a complete asymptotic theory. The book can be read at two levels. Readers interested primarily in methodology will find detailed descriptions of the methods and examples of their application. Researchers interested also in mathematical foundations will find carefully developed theory. The organization of the chapters makes it easy for the reader to choose an appropriate focus. The book introduces the requisite, and frequently used, Hilbert space formalism in a systematic manner. This will be useful to graduate or advanced undergraduate students seeking a self-contained introduction to the subject. Advanced researchers will find novel asymptotic arguments.