Download or read book An Introduction to Theoretical and Computational Aerodynamics written by Jack Moran and published by Courier Corporation. This book was released on 2013-04-22 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise text discusses properties of wings and airfoils in incompressible and primarily inviscid flow, viscid flows, panel methods, finite difference methods, and computation of transonic flows past thin airfoils. 1984 edition.
Download or read book An Introduction to Theoretical and Computational Aerodynamics written by Jack Moran and published by Courier Corporation. This book was released on 2003-01-01 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise text discusses properties of wings and airfoils in incompressible and primarily inviscid flow, viscid flows, panel methods, finite difference methods, and computation of transonic flows past thin airfoils. 1984 edition.
Download or read book Computational Aerodynamics written by Antony Jameson and published by Cambridge University Press. This book was released on 2022-09 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the design and analysis of numerical algorithms for aerodynamics. Ideal for graduates, researchers, and professionals in the field.
Download or read book Theory of Lift written by G. D. McBain and published by John Wiley & Sons. This book was released on 2012-05-22 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from a basic knowledge of mathematics and mechanics gained in standard foundation classes, Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave takes the reader conceptually through from the fundamental mechanics of lift to the stage of actually being able to make practical calculations and predictions of the coefficient of lift for realistic wing profile and planform geometries. The classical framework and methods of aerodynamics are covered in detail and the reader is shown how they may be used to develop simple yet powerful MATLAB or Octave programs that accurately predict and visualise the dynamics of real wing shapes, using lumped vortex, panel, and vortex lattice methods. This book contains all the mathematical development and formulae required in standard incompressible aerodynamics as well as dozens of small but complete working programs which can be put to use immediately using either the popular MATLAB or free Octave computional modelling packages. Key features: Synthesizes the classical foundations of aerodynamics with hands-on computation, emphasizing interactivity and visualization. Includes complete source code for all programs, all listings having been tested for compatibility with both MATLAB and Octave. Companion website (www.wiley.com/go/mcbain) hosting codes and solutions. Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave is an introductory text for graduate and senior undergraduate students on aeronautical and aerospace engineering courses and also forms a valuable reference for engineers and designers.
Download or read book Theoretical and Computational Aerodynamics written by Tapan K. Sengupta and published by John Wiley & Sons. This book was released on 2014-11-17 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerodynamics has seen many developments due to the growth of scientific computing, which has caused the design cycle time of aerospace vehicles to be heavily reduced. Today computational aerodynamics appears in the preliminary step of a new design, relegating costly, time-consuming wind tunnel testing to the final stages of design. Theoretical and Computational Aerodynamics is aimed to be a comprehensive textbook, covering classical aerodynamic theories and recent applications made possible by computational aerodynamics. It starts with a discussion on lift and drag from an overall dynamical approach, and after stating the governing Navier-Stokes equation, covers potential flows and panel method. Low aspect ratio and delta wings (including vortex breakdown) are also discussed in detail, and after introducing boundary layer theory, computational aerodynamics is covered for DNS and LES. Other topics covered are on flow transition to analyse NLF airfoils, bypass transition, streamwise and cross-flow instability over swept wings, viscous transonic flow over airfoils, low Reynolds number aerodynamics, high lift devices and flow control. Key features: Blends classical theories of incompressible aerodynamics to panel methods Covers lifting surface theories and low aspect ratio wing and wing-body aerodynamics Presents computational aerodynamics from first principles for incompressible and compressible flows Covers unsteady and low Reynolds number aerodynamics Includes an up-to-date account of DNS of airfoil aerodynamics including flow transition for NLF airfoils Contains chapter problems and illustrative examples Accompanied by a website hosting problems and a solution manual Theoretical and Computational Aerodynamics is an ideal textbook for undergraduate and graduate students, and is also aimed to be a useful resource book on aerodynamics for researchers and practitioners in the research labs and the industry.
Download or read book Fluid Dynamics written by Z.U.A. Warsi and published by CRC Press. This book was released on 2005-07-26 with total page 860 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many introductions to fluid dynamics offer an illustrative approach that demonstrates some aspects of fluid behavior, but often leave you without the tools necessary to confront new problems. For more than a decade, Fluid Dynamics: Theoretical and Computational Approaches has supplied these missing tools with a constructive approach that mad
Download or read book Aerodynamics of Wings and Bodies written by Holt Ashley and published by Courier Corporation. This book was released on 1965-01-01 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This excellent, innovative reference offers a wealth of useful information and a solid background in the fundamentals of aerodynamics. Fluid mechanics, constant density inviscid flow, singular perturbation problems, viscosity, thin-wing and slender body theories, drag minimalization, and other essentials are addressed in a lively, literate manner and accompanied by diagrams.
Download or read book Theoretical and Applied Aerodynamics written by J. J. Chattot and published by Springer. This book was released on 2016-10-13 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and hypersonic (rotational) flows. A unique feature of the book is its ten self-tests and their solutions as well as an appendix on special techniques of functions of complex variables, method of characteristics and conservation laws and shock waves. The book is the culmination of two courses taught every year by the two authors for the last two decades to seniors and first-year graduate students of aerospace engineering at UC Davis.
Download or read book Theoretical and Computational Aerodynamics written by Tapan K. Sengupta and published by John Wiley & Sons. This book was released on 2014-10-20 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerodynamics has seen many developments due to the growth of scientific computing, which has caused the design cycle time of aerospace vehicles to be heavily reduced. Today computational aerodynamics appears in the preliminary step of a new design, relegating costly, time-consuming wind tunnel testing to the final stages of design. Theoretical and Computational Aerodynamics is aimed to be a comprehensive textbook, covering classical aerodynamic theories and recent applications made possible by computational aerodynamics. It starts with a discussion on lift and drag from an overall dynamical approach, and after stating the governing Navier-Stokes equation, covers potential flows and panel method. Low aspect ratio and delta wings (including vortex breakdown) are also discussed in detail, and after introducing boundary layer theory, computational aerodynamics is covered for DNS and LES. Other topics covered are on flow transition to analyse NLF airfoils, bypass transition, streamwise and cross-flow instability over swept wings, viscous transonic flow over airfoils, low Reynolds number aerodynamics, high lift devices and flow control. Key features: Blends classical theories of incompressible aerodynamics to panel methods Covers lifting surface theories and low aspect ratio wing and wing-body aerodynamics Presents computational aerodynamics from first principles for incompressible and compressible flows Covers unsteady and low Reynolds number aerodynamics Includes an up-to-date account of DNS of airfoil aerodynamics including flow transition for NLF airfoils Contains chapter problems and illustrative examples Accompanied by a website hosting problems and a solution manual Theoretical and Computational Aerodynamics is an ideal textbook for undergraduate and graduate students, and is also aimed to be a useful resource book on aerodynamics for researchers and practitioners in the research labs and the industry.
Download or read book Theoretical and Computational Aeroelasticity written by William P. Rodden and published by Walter Henry Jr (Us). This book was released on 2011 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an advanced text for practising aerospace, structural, and mechanical engineers as well as graduate engineering students. The emphasis is on the problems fixed-wing aircraft experience in flight. It includes discussions of the history of aeroelasticity, the fundamentals of steady and unsteady aerodynamics as well as structural deflection and vibration theory. Issues of quasi-steady manoeuvring flight and flutter stability are considered along with transient response to landing and gust loads and random response to atmospheric turbulence and runway roughness. The final chapters of the book cover aeroservoelasticity wing movement and flight control matters; aerothermoelasticity wing movement and the effects of temperature and thermal stresses; and, aeroelastic design by optimisation based on the author's lifetime of work as a consulting aeronautical engineer and teacher in the field of aeroelasticity. The alphabetical reference list is comprehensive. Several appendices review relevant prerequisite material and historical topics.
Download or read book Principles of Computational Fluid Dynamics written by Pieter Wesseling and published by Springer Science & Business Media. This book was released on 2009-12-21 with total page 651 pages. Available in PDF, EPUB and Kindle. Book excerpt: This up-to-date book gives an account of the present state of the art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated in some detail, using elementary methods. The author gives many pointers to the current literature, facilitating further study. This book will become the standard reference for CFD for the next 20 years.
Download or read book Low Speed Aerodynamics written by Joseph Katz and published by Cambridge University Press. This book was released on 2001-02-05 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-speed aerodynamics is important in the design and operation of aircraft flying at low Mach number, and ground and marine vehicles. This 2001 book offers a modern treatment of the subject, both the theory of inviscid, incompressible, and irrotational aerodynamics and the computational techniques now available to solve complex problems. A unique feature of the text is that the computational approach (from a single vortex element to a three-dimensional panel formulation) is interwoven throughout. Thus, the reader can learn about classical methods of the past, while also learning how to use numerical methods to solve real-world aerodynamic problems. This second edition has a new chapter on the laminar boundary layer (emphasis on the viscous-inviscid coupling), the latest versions of computational techniques, and additional coverage of interaction problems. It includes a systematic treatment of two-dimensional panel methods and a detailed presentation of computational techniques for three-dimensional and unsteady flows. With extensive illustrations and examples, this book will be useful for senior and beginning graduate-level courses, as well as a helpful reference tool for practising engineers.
Download or read book Introduction to Space Dynamics written by William Tyrrell Thomson and published by Courier Corporation. This book was released on 2012-09-11 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive, classic introduction to space-flight engineering for advanced undergraduate and graduate students provides basic tools for quantitative analysis of the motions of satellites and other vehicles in space.
Download or read book Fluid Dynamics written by Constantine Pozrikidis and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ready access to computers at an institutional and personal level has defined a new era in teaching and learning. The opportunity to extend the subject matter of traditional science and engineering disciplines into the realm of scientific computing has become not only desirable, but also necessary. Thanks to port ability and low overhead and operating costs, experimentation by numerical simulation has become a viable substitute, and occasionally the only alternative, to physical experiment at ion. The new environment has motivated the writing of texts and mono graphs with a modern perspective that incorporates numerical and com puter programming aspects as an integral part of the curriculum: meth ods, concepts, and ideas should be presented in a unified fashion that motivates and underlines the urgency of the new elements, but does not compromise the rigor of the classical approach and does not oversimplify. Interfacing fundamental concepts and practical methods of scientific computing can be done on different levels. In one approach, theory and implement at ion are kept complementary and presented in a sequential fashion. In a second approach, the coupling involves deriving compu tational methods and simulation algorithms, and translating equations into computer code instructions immediately following problem formu lations. The author of this book is a proponent of the second approach and advocates its adoption as a means of enhancing learning: interject ing methods of scientific computing into the traditional discourse offers a powerful venue for developing analytical skills and obtaining physical insight.
Download or read book Applied Computational Aerodynamics written by Russell M. Cummings and published by Cambridge University Press. This book was released on 2015-04-27 with total page 893 pages. Available in PDF, EPUB and Kindle. Book excerpt: This computational aerodynamics textbook is written at the undergraduate level, based on years of teaching focused on developing the engineering skills required to become an intelligent user of aerodynamic codes. This is done by taking advantage of CA codes that are now available and doing projects to learn the basic numerical and aerodynamic concepts required. This book includes a number of unique features to make studying computational aerodynamics more enjoyable. These include: • The computer programs used in the book's projects are all open source and accessible to students and practicing engineers alike on the book's website, www.cambridge.org/aerodynamics. The site includes access to images, movies, programs, and more • The computational aerodynamics concepts are given relevance by CA Concept Boxes integrated into the chapters to provide realistic asides to the concepts • Readers can see fluids in motion with the Flow Visualization Boxes carefully integrated into the text.
Download or read book A History of Aerodynamics written by John David Anderson and published by Cambridge University Press. This book was released on 1998 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Foreword: 'John Anderson's book represents a milestone in aviation literature. For the first time aviation enthusiasts - both specialists and popular readers alike - possess an authoritative history of aerodynamic theory. Not only is this study authoritative, it is also highly readable and linked to the actual (and more familiar) story of how the airplane evolved. The book touches on all the major theorists and their contributions and, most important, the historical context in which they worked to move the science of aerodynamics forward.' Von Hardesty, Smithsonian Institution From the reviews: 'Something of the unexpected quality of this book can be inferred from its full title A History of Aerodynamics and Its Impact on Flying Machines. Pilots tend to suppose that the science of aerodynamics began empirically, somewhere around the time of Lilienthal and the Wrights, and that aerodynamics and manned flight are roughly coeval. It is therefore surprising to come upon a photograph of the Wright Flyer as late as page 242 of the 478-page volume.' Peter Garrison, Flying 'This book successfully straddles the boundary that separates a text book from a history book. It is of equal interest to both the aerodynamicist and the layman. The textual balance achieved by the author has resulted in a book that is enjoyable and educational.' Earl See, American Aviation Historical Society Newsletter
Download or read book Computational Aerodynamic Modeling of Aerospace Vehicles written by Mehdi Ghoreyshi and published by MDPI. This book was released on 2019-03-08 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Currently, the use of computational fluid dynamics (CFD) solutions is considered as the state-of-the-art in the modeling of unsteady nonlinear flow physics and offers an early and improved understanding of air vehicle aerodynamics and stability and control characteristics. This Special Issue covers recent computational efforts on simulation of aerospace vehicles including fighter aircraft, rotorcraft, propeller driven vehicles, unmanned vehicle, projectiles, and air drop configurations. The complex flow physics of these configurations pose significant challenges in CFD modeling. Some of these challenges include prediction of vortical flows and shock waves, rapid maneuvering aircraft with fast moving control surfaces, and interactions between propellers and wing, fluid and structure, boundary layer and shock waves. Additional topic of interest in this Special Issue is the use of CFD tools in aircraft design and flight mechanics. The problem with these applications is the computational cost involved, particularly if this is viewed as a brute-force calculation of vehicle’s aerodynamics through its flight envelope. To make progress in routinely using of CFD in aircraft design, methods based on sampling, model updating and system identification should be considered.