Download or read book The Theory of Subsonic Plane Flow written by L. C. Woods and published by Cambridge University Press. This book was released on 2011-06-09 with total page 619 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 1961 book presents a concise and systematic treatment of two-dimensional subsonic, inviscid fluid motion and its aeronautical applications. Part I surveys the relevant fluid dynamics, assuming only a basic knowledge of the topic. In Part II, the methods of conformal mapping and Cauchy integrals are developed, on the assumption that the reader has only an elementary understanding of complex variable theory; this will be of interest to a wide range of applied mathematicians and engineers. In Part III, the methods are applied to several problems in fluid mechanics and aero dynamics. The text provides an extensive account of mixed boundary-value problems and treats such examples of these problems as occur in ventilated wind-tunnel theory, jet-flap theory and unsteady Hemholtz motions.
Download or read book Cavitation and Bubble Dynamics written by Christopher E. Brennen and published by Cambridge University Press. This book was released on 2014 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cavitation and Bubble Dynamics deals with fundamental physical processes of bubble dynamics and cavitation for graduate students and researchers.
Download or read book Fluid Dynamics of Cavitation and Cavitating Turbopumps written by Luca d'Agostino and published by Springer Science & Business Media. This book was released on 2008-04-20 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on the fluid dynamics of cavitation with special reference to high power density turbopumps, where it represents the major source of performance and life degradation. While covering the more fundamental aspects of cavitation and the main kinds of cavitating flows, there is focus on the hydrodynamics and instabilities of cavitating turbopumps. The book also illustrates the alternative approaches for modeling and engineering simulation of cavitating flows.
Download or read book Mechanics of Fluids written by Joseph M. Powers and published by Cambridge University Press. This book was released on 2023-06-29 with total page 721 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible, rigorous introduction to fluid mechanics, with a robust emphasis on theoretical foundations and mathematical exposition.
Download or read book Handbook of Complex Analysis written by Reiner Kuhnau and published by Elsevier. This book was released on 2004-12-09 with total page 876 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings. Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of qualitative properties of conformal and quasiconformal mappings, concerning mainly a prior estimates, so called distortion theorems (including the Bieberbach conjecture with the proof of the Branges). Here a starting point was the classical Scharz lemma, and then Koebe's distortion theorem. There are several connections to mathematical physics, because of the relations to potential theory (in the plane). The Handbook of Geometric Function Theory contains also an article about constructive methods and further a Bibliography including applications eg: to electroxtatic problems, heat conduction, potential flows (in the plane). · A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane).
Download or read book Schwarz Christoffel Mapping written by Tobin A. Driscoll and published by Cambridge University Press. This book was released on 2002-06-20 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive look at the Schwarz-Christoffel transformation, including its history and foundations, practical computation, common and less common variations, and many applications in fields such as electromagnetism, fluid flow, design and inverse problems, and the solution of linear systems of equations. It is an accessible resource for engineers, scientists, and applied mathematicians who seek more experience with theoretical or computational conformal mapping techniques. The most important theoretical results are stated and proved, but the emphasis throughout remains on concrete understanding and implementation, as evidenced by the 76 figures based on quantitatively correct illustrative examples. There are over 150 classical and modern reference works cited for readers needing more details. There is also a brief appendix illustrating the use of the Schwarz-Christoffel Toolbox for MATLAB, a package for computation of these maps.
Download or read book Fluid Flow written by L.C. Wrobel and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-11-21 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1968 with total page 814 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Fundamentals of Multiphase Flow written by Christopher E. Brennen and published by Cambridge University Press. This book was released on 2005-04-18 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is targeted to graduate students and researchers at the cutting edge of investigations into the fundamental nature of multiphase flows. It is intended as a reference book for the basic methods used in the treatment of multiphase flows. The subject of multiphase flows encompasses a vast field, a host of different technological contexts, a wide spectrum of different scales, a broad range of engineering disciplines, and a multitude of different analytical approaches. The aim of Fundamentals of Multiphase Flow is to bring much of this fundamental understanding together into one book, presenting a unifying approach to the fundamental ideas of multiphase flows. The book summarizes those fundamental concepts with relevance to a broad spectrum of multiphase flows. It does not pretend to present a comprehensive review of the details of any one multiphase flow or technological context; references to such reviews are included where appropriate.
Download or read book Coanda Effect written by Noor A Ahmed and published by CRC Press. This book was released on 2019-08-28 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Coanda effect is a complex fluid flow phenomenon enabling the production of vertical take-off/landing aircraft. Other applications range from helicopters to road vehicles, from flow mixing to combustion, from noise reduction to pollution control, from power generation to robot operation, and so forth. Book starts with description of the effect, its history and general formulation of governing equations/simplifications used in different applications. Further, it gives an account of this effect’s lift boosting potential on a wing and in non-flying vehicles including industrial applications. Finally, occurrence of the same in human body and associated adverse medical conditions are explained.
Download or read book Inviscid Fluid Flows written by Hilary Ockendon and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Mathematics is the art of constructing mathematical models of observed phenomena so that both qualitative and quantitative results can be predicted by the use of analytical and numerical methods. Theoretical Mechanics is concerned with the study of those phenomena which can be ob served in everyday life in the physical world around us. It is often characterised by the macroscopic approach which allows the concept of an element or particle of material, small compared to the dimensions of the phenomena being modelled, yet large compared to the molecular size of the material. Then atomic and molecular phenomena appear only as quantities averaged over many molecules. It is therefore natural that the mathemati cal models derived are in terms of functions which are continuous and well behaved, and that the analytical and numerical methods required for their development are strongly dependent on the theory of partial and ordinary differential equations. Much pure research in Mathematics has been stimu lated by the need to develop models of real situations, and experimental observations have often led to important conjectures and theorems in Analysis. It is therefore important to present a careful account of both the physical or experimental observations and the mathematical analysis used. The authors believe that Fluid Mechanics offers a rich field for il lustrating the art of mathematical modelling, the power of mathematical analysis and the stimulus of applications to readily observed phenomena.
Download or read book Quantitative Methods in Reservoir Engineering written by Wilson C Chin and published by Gulf Professional Publishing. This book was released on 2016-10-01 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantitative Methods in Reservoir Engineering, Second Edition, brings together the critical aspects of the industry to create more accurate models and better financial forecasts for oil and gas assets. Updated to cover more practical applications related to intelligent infill drilling, optimized well pattern arrangement, water flooding with modern wells, and multiphase flow, this new edition helps reservoir engineers better lay the mathematical foundations for analytical or semi-analytical methods in today's more difficult reservoir engineering applications. Authored by a worldwide expert on computational flow modeling, this reference integrates current mathematical methods to aid in understanding more complex well systems and ultimately guides the engineer to choose the most profitable well path. The book delivers a valuable tool that will keep reservoir engineers up-to-speed in this fast-paced sector of the oil and gas market. - Stay competitive with new content on unconventional reservoir simulation - Get updated with new material on formation testing and flow simulation for complex well systems and paths - Apply methods derived from real-world case studies and calculation examples
Download or read book Reservoir Engineering in Modern Oilfields written by Wilson C. Chin and published by John Wiley & Sons. This book was released on 2016-08-11 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real-world reservoirs are layered, heterogeneous and anisotropic, exposed to water and gas drives, faults, barriers and fractures. They are produced by systems of vertical, deviated, horizontal and multilateral wells whose locations, sizes, shapes and topologies are dictated "on the fly, at random"by petroleum engineers and drillers at well sites. Wells may be pressure or rate-constrained, with these roles re-assigned during simulation with older laterals shut-in, newer wells drilled and brought on stream, and so on. And all are subject to steady and transient production, each satisfying different physical and mathematical laws, making reservoir simulation an art difficult to master and introducing numerous barriers to entry. All of these important processes can now be simulated in any order using rapid, stable and accurate computational models developed over two decades. And what if it were further possible to sketch complicated geologies and lithologies, plus equally complex systems of general wells, layer-by-layer using Windows Notepad? And with no prior reservoir simulation experience and only passing exposure to reservoir engineering principles? Have the user press "Simulate," and literally, within minutes, produce complicated field-wide results, production forecasts, and detailed three-dimensional color pressure plots from integrated graphics algorithms? Developed over years of research, this possibility has become reality. The author, an M.I.T. trained scientist who has authored fifteen original research books, over a hundred papers and forty patents, winner of a prestigious British Petroleum Chairman's Innovation Award in reservoir engineering and a record five awards from the United States Department of Energy, has delivered just such a product, making real-time planning at the well-site simple and practical. Workflows developed from experience as a practicing reservoir engineer are incorporated into "intelligent menus" that make in-depth understanding of simulation principles and readings of user manuals unnecessary. This volume describes new technology for down-to-earth problems using numerous examples performed with our state-of-the-art simulator, one that is available separately at affordable cost and requiring only simple Intel Core i5 computers without specialized graphics boards. The new methods are rigorous, validated and well-documented and are now available for broad petroleum industry application.
Download or read book Reservoir Simulation and Well Interference written by Wilson C. Chin and published by John Wiley & Sons. This book was released on 2020-03-17 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Co-written by a world-renowned petroleum engineer, this breakthrough new volume teaches engineers how to configure, place and produce horizontal and multilateral wells in geologically complicated reservoirs, select optimal well spacings and fracture separations, and how to manage factors influencing well productivity using proven cost-effective and user-friendly simulation methods. Charged in the 1990s with solving some of petroleum engineering's biggest problems that the industry deemed "unsolvable," the authors of this innovative new volume solved those problems, not just using a well-published math model, but one optimized to run rapidly, the first time, every time. This not only provides numerical output, but production curves and color pressure plots automatically. And each in a single hour of desk time. Using their Multisim software that is featured in this volume, secondary school students at the Aldine Independent School District delivered professional quality simulations in a training program funded by some of the largest energy companies in the world. Think what you, as a professional engineer, could do in your daily work. Valuable with or without the software, this volume is the cutting-edge of reservoir engineering today, prefacing each chapter with a "trade journal summary" followed by hands-on details, allowing readers to replicate and extend results for their own applications. This volume covers parent-child, multilateral well, and fracture flow interactions, reservoir flow analysis, many other issues involving fluid flow, fracturing, and many other common "unsolvable" problems that engineers encounter every day. It is a must-have for every engineer's bookshelf.
Download or read book Marine Hydrodynamics 40th anniversary edition written by J. N. Newman and published by MIT Press. This book was released on 2018-01-26 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook that offers a unified treatment of the applications of hydrodynamics to marine problems. The applications of hydrodynamics to naval architecture and marine engineering expanded dramatically in the 1960s and 1970s. This classic textbook, originally published in 1977, filled the need for a single volume on the applications of hydrodynamics to marine problems. The book is solidly based on fundamentals, but it also guides the student to an understanding of engineering applications through its consideration of realistic configurations. The book takes a balanced approach between theory and empirics, providing the necessary theoretical background for an intelligent evaluation and application of empirical procedures. It also serves as an introduction to more specialized research methods. It unifies the seemingly diverse problems of marine hydrodynamics by examining them not as separate problems but as related applications of the general field of hydrodynamics. The book evolved from a first-year graduate course in MIT's Department of Ocean Engineering. A knowledge of advanced calculus is assumed. Students will find a previous introductory course in fluid dynamics helpful, but the book presents the necessary fundamentals in a self-contained manner. The 40th anniversary of this pioneering book offers a foreword by John Grue. Contents Model Testing • The Motion of a Viscous Fluid • The Motion of an Ideal Fluid • Lifting Surfaces • Waves and Wave Effects • Hydrodynamics of Slender Bodies
Download or read book Recent Developments in Theoretical and Experimental Fluid Mechanics written by U. Müller and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dedicated to Prof. Dr.-Ing. J. Zierep
Download or read book Computational Techniques for Fluid Dynamics 2 written by Clive A.J. Fletcher and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose and organisation of this book are described in the preface to the first edition (1988). In preparing this edition minor changes have been made, par ticularly to Chap. 1 (Vol. 1) to keep it reasonably current, and to upgrade the treatment of specific techniques, particularly in Chaps. 12-14 and 16-18. How ever, the rest of the book (Vols. 1 and 2) has required only minor modification to clarify the presentation and to modify or replace individual problems to make them more effective. The answers to the problems are available in Solutions Manual jor Computational Techniques jor Fluid Dynamics by K. Srinivas and C. A. J. Fletcher, published by Springer-Verlag, Heidelberg, 1991. The computer programs have also been reviewed and tidied up. These are available on an IBM compatible floppy disc direct from the author. I would like to take this opportunity to thank the many readers for their usually generous comments about the first edition and particularly those readers who went to the trouble of drawing specific errors to my attention. In this revised edi tion considerable effort has been made to remove a number of minor errors that had found their way into the original. I express the hope that no errors remain but welcome communication that will help me improve future editions. In preparing this revised edition I have received considerable help from Dr. K.