Download or read book The Mandelbrot Set Theme and Variations written by Tan Lei and published by Cambridge University Press. This book was released on 2000-04-13 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mandelbrot set is a fractal shape that classifies the dynamics of quadratic polynomials. It has a remarkably rich geometric and combinatorial structure. This volume provides a systematic exposition of current knowledge about the Mandelbrot set and presents the latest research in complex dynamics. Topics discussed include the universality and the local connectivity of the Mandelbrot set, parabolic bifurcations, critical circle homeomorphisms, absolutely continuous invariant measures and matings of polynomials, along with the geometry, dimension and local connectivity of Julia sets. In addition to presenting new work, this collection documents important results hitherto unpublished or difficult to find in the literature. This book will be of interest to graduate students in mathematics, physics and mathematical biology, as well as researchers in dynamical systems and Kleinian groups.
Download or read book The Mandelbrot Set Theme and Variations written by Lei Tan and published by . This book was released on 2014-05-14 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Systematic exposition of current knowledge about the Mandelbrot set, discussing the latest research and results.
Download or read book In Search of the Riemann Zeros written by Michel Laurent Lapidus and published by American Mathematical Soc.. This book was released on 2008 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: Formulated in 1859, the Riemann Hypothesis is the most celebrated and multifaceted open problem in mathematics. In essence, it states that the primes are distributed as harmoniously as possible--or, equivalently, that the Riemann zeros are located on a single vertical line, called the critical line.
Download or read book Exploring Scale Symmetry written by Thomas Lowe and published by World Scientific. This book was released on 2021-02-18 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Welcome to the world of scale symmetry, the last elementary symmetry and the least explored!Find out how this long-neglected element transforms the traditional geometry of lines and planes into a rich landscape of trees, craggy mountains and rolling oceans.Enjoy a visual exploration through the intricate and elaborate structures of scale-symmetric geometry. See unique fractals, Mandelboxes, and automata and physical behaviors. Take part in the author's forage into the lesser-trodden regions of this landscape, and discover unusual and attractive specimens!You will also be provided with all the tools needed to recreate the structures yourself.Every example is new and developed by the author, and is chosen because it pushes the field of scale-symmetric geometry into a scarcely explored region. The results are complex and intricate but the method of generation is often simple, which allows it to be presented graphically without depending on too much mathematical syntax. If you are interested in the mathematics, science and art of scale symmetry, then read on!This is also a book for programmers and for hobbyists: those of us who like to dabble with procedural imagery and see where it leads.
Download or read book Fractal Geometry written by Kenneth Falconer and published by John Wiley & Sons. This book was released on 2007-12-10 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its original publication in 1990, Kenneth Falconer's Fractal Geometry: Mathematical Foundations and Applications has become a seminal text on the mathematics of fractals. It introduces the general mathematical theory and applications of fractals in a way that is accessible to students from a wide range of disciplines. This new edition has been extensively revised and updated. It features much new material, many additional exercises, notes and references, and an extended bibliography that reflects the development of the subject since the first edition. * Provides a comprehensive and accessible introduction to the mathematical theory and applications of fractals. * Each topic is carefully explained and illustrated by examples and figures. * Includes all necessary mathematical background material. * Includes notes and references to enable the reader to pursue individual topics. * Features a wide selection of exercises, enabling the reader to develop their understanding of the theory. * Supported by a Web site featuring solutions to exercises, and additional material for students and lecturers. Fractal Geometry: Mathematical Foundations and Applications is aimed at undergraduate and graduate students studying courses in fractal geometry. The book also provides an excellent source of reference for researchers who encounter fractals in mathematics, physics, engineering, and the applied sciences. Also by Kenneth Falconer and available from Wiley: Techniques in Fractal Geometry ISBN 0-471-95724-0 Please click here to download solutions to exercises found within this title: http://www.wileyeurope.com/fractal
Download or read book Complex Dynamics written by Dierk Schleicher and published by CRC Press. This book was released on 2009-11-03 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex Dynamics: Families and Friends features contributions by many of the leading mathematicians in the field, such as Mikhail Lyubich, John Milnor, Mitsuhiro Shishikura, and William Thurston. Some of the chapters, including an introduction by Thurston to the general subject of complex dynamics, are classic manuscripts that were never published
Download or read book Fractal Geometry and Applications A Jubilee of Benoit Mandelbrot written by Michel Laurent Lapidus and published by American Mathematical Soc.. This book was released on 2004 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers an excellent selection of cutting-edge articles about fractal geometry, covering the great breadth of mathematics and related areas touched by this subject. Included are rich survey articles and fine expository papers. The high-quality contributions to the volume by well-known researchers--including two articles by Mandelbrot--provide a solid cross-section of recent research representing the richness and variety of contemporary advances in and around fractal geometry. In demonstrating the vitality and diversity of the field, this book will motivate further investigation into the many open problems and inspire future research directions. It is suitable for graduate students and researchers interested in fractal geometry and its applications. This is a two-part volume. Part 1 covers analysis, number theory, and dynamical systems; Part 2, multifractals, probability and statistical mechanics, and applications.
Download or read book How Complexity Shapes the World written by Georg Franz Weber and published by Cambridge Scholars Publishing. This book was released on 2021-08-20 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores how we may overcome categorizations and opposites in how we explain all existence. It places such ideas into the context of existing complexity paradigms. Research into complex systems has revolutionized virtually all areas of inquiry over the past half century. The algorithms of non-linear systems research have enabled us to unify descriptions of the world that were distinct under traditional, reductionist explorations. It is the beauty of complexity that it brings together various scientific fields that, in the past, were treated as separate entities under specialized study. They are now found to be governed by the same laws of non-linearity. However, this achievement comes at the price of abstraction and open-endedness. The book is motivated by the philosophical desire to eliminate categorizations and opposites in the sciences and arrive at a unified description of nature and society. To the reader, it offers innovative philosophical insights derived from complexity research.
Download or read book Deterministic Chaos In One Dimensional Continuous Systems written by Jan Awrejcewicz and published by World Scientific. This book was released on 2016-03-14 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the computational analysis of nonlinear vibrations of structural members (beams, plates, panels, shells), where the studied dynamical problems can be reduced to the consideration of one spatial variable and time. The reduction is carried out based on a formal mathematical approach aimed at reducing the problems with infinite dimension to finite ones. The process also includes a transition from governing nonlinear partial differential equations to a set of finite number of ordinary differential equations.Beginning with an overview of the recent results devoted to the analysis and control of nonlinear dynamics of structural members, placing emphasis on stability, buckling, bifurcation and deterministic chaos, simple chaotic systems are briefly discussed. Next, bifurcation and chaotic dynamics of the Euler-Bernoulli and Timoshenko beams including the geometric and physical nonlinearity as well as the elastic-plastic deformations are illustrated. Despite the employed classical numerical analysis of nonlinear phenomena, the various wavelet transforms and the four Lyapunov exponents are used to detect, monitor and possibly control chaos, hyper-chaos, hyper-hyper-chaos and deep chaos exhibited by rectangular plate-strips and cylindrical panels.The book is intended for post-graduate and doctoral students, applied mathematicians, physicists, teachers and lecturers of universities and companies dealing with a nonlinear dynamical system, as well as theoretically inclined engineers of mechanical and civil engineering.
Download or read book Collected Papers of John Milnor written by Araceli Bonifant and published by American Mathematical Soc.. This book was released on 2014-11-05 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the seventh in the series "Collected Papers of John Milnor." Together with the preceding Volume VI, it contains all of Milnor's papers in dynamics, through the year 2012. Most of the papers are in holomorphic dynamics; however, there are two in real dynamics and one on cellular automata. Two of the papers are published here for the first time. The papers in this volume provide important and fundamental material in real and complex dynamical systems. Many have become classics, and have inspired further research in the field. Some of the questions addressed here continue to be important in current research. In some cases, there have been minor corrections or clarifications, as well as references to more recent work which answers questions raised by the author. The volume also includes an index to facilitate searching the book for specific topics.
Download or read book Fatou Julia Montel written by Michèle Audin and published by Springer. This book was released on 2011-01-29 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: How did Pierre Fatou and Gaston Julia create what we now call Complex Dynamics, in the context of the early twentieth century and especially of the First World War? The book is based partly on new, unpublished sources. Who were Pierre Fatou, Gaston Julia, Paul Montel? New biographical information is given on the little known mathematician that was Pierre Fatou. How did the WW1 injury of Julia influence mathematical life in France? From the reviews of the French version: "Audin’s book is ... filled with marvelous biographical information and analysis, dealing not just with the men mentioned in the book’s title but a large number of other players, too ... [It] addresses itself to scholars for whom the history of mathematics has a particular resonance and especially to mathematicians active, or even with merely an interest, in complex dynamics. ... presents it all to the reader in a very appealing form." (Michael Berg, The Mathematical Association of America, October 2009)
Download or read book Dynamics in One Non Archimedean Variable written by Robert L. Benedetto and published by American Mathematical Soc.. This book was released on 2019-03-05 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of complex dynamics in one variable, initiated by Fatou and Julia in the early twentieth century, concerns the iteration of a rational function acting on the Riemann sphere. Building on foundational investigations of p-adic dynamics in the late twentieth century, dynamics in one non-archimedean variable is the analogous theory over non-archimedean fields rather than over the complex numbers. It is also an essential component of the number-theoretic study of arithmetic dynamics. This textbook presents the fundamentals of non-archimedean dynamics, including a unified exposition of Rivera-Letelier's classification theorem, as well as results on wandering domains, repelling periodic points, and equilibrium measures. The Berkovich projective line, which is the appropriate setting for the associated Fatou and Julia sets, is developed from the ground up, as are relevant results in non-archimedean analysis. The presentation is accessible to graduate students with only first-year courses in algebra and analysis under their belts, although some previous exposure to non-archimedean fields, such as the p-adic numbers, is recommended. The book should also be a useful reference for more advanced students and researchers in arithmetic and non-archimedean dynamics.
Download or read book Magical Mathematics written by Persi Diaconis and published by Princeton University Press. This book was released on 2015-10-13 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Magical Mathematics reveals the secrets of amazing, fun-to-perform card tricks--and the profound mathematical ideas behind them--that will astound even the most accomplished magician. Persi Diaconis and Ron Graham provide easy, step-by-step instructions for each trick, explaining how to set up the effect and offering tips on what to say and do while performing it. Each card trick introduces a new mathematical idea, and varying the tricks in turn takes readers to the very threshold of today's mathematical knowledge. For example, the Gilbreath principle--a fantastic effect where the cards remain in control despite being shuffled--is found to share an intimate connection with the Mandelbrot set. Other card tricks link to the mathematical secrets of combinatorics, graph theory, number theory, topology, the Riemann hypothesis, and even Fermat's last theorem. Diaconis and Graham are mathematicians as well as skilled performers with decades of professional experience between them. In this book they share a wealth of conjuring lore, including some closely guarded secrets of legendary magicians. Magical Mathematics covers the mathematics of juggling and shows how the I Ching connects to the history of probability and magic tricks both old and new. It tells the stories--and reveals the best tricks--of the eccentric and brilliant inventors of mathematical magic. Magical Mathematics exposes old gambling secrets through the mathematics of shuffling cards, explains the classic street-gambling scam of three-card monte, traces the history of mathematical magic back to the thirteenth century and the oldest mathematical trick--and much more"-
Download or read book Quasiconformal Surgery in Holomorphic Dynamics written by Bodil Branner and published by Cambridge University Press. This book was released on 2014-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to quasiconformal surgery in holomorphic dynamics. Contains a wide variety of applications and illustrations.
Download or read book Dynamics in One Complex Variable written by John Milnor and published by Princeton University Press. This book was released on 2011-02-11 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. This subject is large and rapidly growing. These lectures are intended to introduce some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics from topology. This third edition contains a number of minor additions and improvements: A historical survey has been added, the definition of Lattés map has been made more inclusive, and the écalle-Voronin theory of parabolic points is described. The résidu itératif is studied, and the material on two complex variables has been expanded. Recent results on effective computability have been added, and the references have been expanded and updated. Written in his usual brilliant style, the author makes difficult mathematics look easy. This book is a very accessible source for much of what has been accomplished in the field.
Download or read book Meromorphic Dynamics written by Janina Kotus and published by Cambridge University Press. This book was released on 2023-02-28 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first monograph to explore the beautiful and rich dynamics of elliptic functions, with an emphasis on ergodic aspects.
Download or read book Fractal Zeta Functions and Fractal Drums written by Michel L. Lapidus and published by Springer. This book was released on 2017-06-07 with total page 685 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the first time that essential singularities of fractal zeta functions can naturally emerge for various classes of fractal sets and have a significant geometric effect. The theory developed in this book leads naturally to a new definition of fractality, expressed in terms of the existence of underlying geometric oscillations or, equivalently, in terms of the existence of nonreal complex dimensions. The connections to previous extensive work of the first author and his collaborators on geometric zeta functions of fractal strings are clearly explained. Many concepts are discussed for the first time, making the book a rich source of new thoughts and ideas to be developed further. The book contains a large number of open problems and describes many possible directions for further research. The beginning chapters may be used as a part of a course on fractal geometry. The primary readership is aimed at graduate students and researchers working in Fractal Geometry and other related fields, such as Complex Analysis, Dynamical Systems, Geometric Measure Theory, Harmonic Analysis, Mathematical Physics, Analytic Number Theory and the Spectral Theory of Elliptic Differential Operators. The book should be accessible to nonexperts and newcomers to the field.