EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Effect of Environmental Factors on the Implementation of the Mechanistic empirical Pavement Design Guide  MEPDG

Download or read book The Effect of Environmental Factors on the Implementation of the Mechanistic empirical Pavement Design Guide MEPDG written by George Abraham Dzotepe and published by . This book was released on 2011 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current pavement design based on the AASHTO Design Guide uses an empirical approach from the results of the AASHO Road Test conducted in 1958. To address some of the limitations of the original design guide, AASHTO developed a new guide: Mechanistic Empirical Pavement Design Guide (MEPDG). This guide combines the mechanistic and empirical methodology by making use of calculations of pavement responses such as stress, strains, and deformations using site specific inputs from climate, material, and traffic properties. With the new guide, various implementation challenges need to be overcome by agencies wanting to facilitate its use. In this respect, the MEPDG is currently undergoing several validation and calibration research studies, which are in the areas of materials, climate and traffic characteristics. It is anticipated that the findings from the various research studies will facilitate the implementaion of the MEPDG nationwide. This study summarizes the challenges that are likely to impede implementation of the MEPDG within the Northwest Region and how these can be overcome. The study also investigates the effects of climate variables on the predicted pavement performance indicators and, in addition, evaluates the adequacy of using interpolated climate data on pavement performance in the state of Wyoming.

Book Laboratory Study of Concrete Properties to Support Implementation of the New AASHTO Mechanistic empirical Pavement Design Guide

Download or read book Laboratory Study of Concrete Properties to Support Implementation of the New AASHTO Mechanistic empirical Pavement Design Guide written by and published by . This book was released on 2012 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mechanistic empirical Pavement Design Guide

Download or read book Mechanistic empirical Pavement Design Guide written by American Association of State Highway and Transportation Officials and published by AASHTO. This book was released on 2008 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Analysis of the Mechanistic empirical Pavement Design Guide Performance Predictions

Download or read book Analysis of the Mechanistic empirical Pavement Design Guide Performance Predictions written by Stacey D. Diefenderfer and published by . This book was released on 2010 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures (MEPDG) is an improved methodology for pavement design and the evaluation of paving materials. The Virginia Department of Transportation (VDOT) is expecting to transition to using the MEPDG methodology in the near future. The purpose of this research was to support this implementation effort. A catalog of mixture properties from 11 asphalt mixtures (3 surface mixtures, 4 intermediate mixtures, and 4 base mixtures) was compiled along with the associated asphalt binder properties to provide input values. The predicted fatigue and rutting distresses were used to evaluate the sensitivity of the MEPDG software to differences in the mixture properties and to assess the future needs for implementation of the MEPDG. Two pavement sections were modeled: one on a primary roadway and one on an interstate roadway. The MEPDG was used with the default calibration factors. Pavement distress data were compiled for the interstate and primary route corresponding to the modeled sections and were compared to the MEPDG-predicted distresses. Predicted distress quantities for fatigue cracking and rutting were compared to the calculated distress model predictive errors to determine if there were significant differences between material property input levels. There were differences between all rutting and fatigue predictions using Level 1, 2, and 3 asphalt material inputs, although not statistically significant. Various combinations of Level 3 inputs showed expected trends in rutting predictions when increased binder grades were used, but the differences were not statistically significant when the calibration model error was considered. Pavement condition data indicated that fatigue distress predictions were approximately comparable to the pavement condition data for the interstate pavement structure, but fatigue was over-predicted for the primary route structure. Fatigue model predictive errors were greater than the distress predictions for all predictions. Based on the findings of this study, further refinement or calibration of the predictive models is necessary before the benefits associated with their use can be realized. A local calibration process should be performed to provide calibration and verification of the predictive models so that they may accurately predict the conditions of Virginia roadways. Until then, implementation using Level 3 inputs is recommended. If the models are modified, additional evaluation will be necessary to determine if the other recommendations of this study are impacted. Further studies should be performed using Level 1 and Level 2 input properties of additional asphalt mixtures to validate the trends seen in the Level 3 input predictions and isolate the effects of binder grade changes on the predicted distresses. Further, additional asphalt mixture and binder properties should be collected to populate fully a catalog for VDOT's future implementation use. The implementation of these recommendations and use of the MEPDG are expected to provide VDOT with a more efficient and effective means for pavement design and analysis. The use of optimal pavement designs will provide economic benefits in terms of initial construction and lifetime maintenance costs.

Book Guide for the Local Calibration of the Mechanistic empirical Pavement Design Guide

Download or read book Guide for the Local Calibration of the Mechanistic empirical Pavement Design Guide written by and published by AASHTO. This book was released on 2010 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This guide provides guidance to calibrate the Mechanistic-Empirical Pavement Design Guide (MEPDG) software to local conditions, policies, and materials. It provides the highway community with a state-of-the-practice tool for the design of new and rehabilitated pavement structures, based on mechanistic-empirical (M-E) principles. The design procedure calculates pavement responses (stresses, strains, and deflections) and uses those responses to compute incremental damage over time. The procedure empirically relates the cumulative damage to observed pavement distresses.

Book Mechanistic empirical Pavement Design Guide Implementation Plan

Download or read book Mechanistic empirical Pavement Design Guide Implementation Plan written by Todd E. Hoerner and published by . This book was released on 2007 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: As AASH is expected to eventually adopt the MEPDG at its primary pavement design method, it is critical that the SDDOT become familiar with the MEPGD documentation and associated design software. The research conducted under this project was a first step toward achieving this goal.

Book Implementation of the Mechanistic empiricalpavement  sic  Design Guide  MEPDG

Download or read book Implementation of the Mechanistic empiricalpavement sic Design Guide MEPDG written by George Abraham Dzotepe and published by . This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current pavement design methodology based on the AASHTO Design Guide uses an empirical approach based on the results of the AASHTO Road Test conducted in 1958. But limitations of the current guide led AAHSTO to publish the new Mechanistic Empirical Pavement Design Guide (MEPDG), which combines mechanistic and empirical methodology by using calculations of pavement responses, such as stress, strains, and deformations (mechanistic) using site specific inputs from climate, material, and traffic properties. As a new design guide and with large data inputs required, there are bound to be challenges. In this respect, the MEPDG is currently undergoing many changes with further research being conducted at the national, regional, and local levels into various aspects of the guide, especially in the areas of materials, climate, and traffic characteristics. It is hoped that the findings from various research studies will facilitate the implementaion of the MEPDG within national, regional, and local transporation agencies and professionals. Consequently, a North-West States' MEPDG User Group meeting was held in Oregon on March 9-10 to discuss the region's implementation plans and progress, related technical issues, and the future direction of the MEPDG. This report summarizes the findings from the meeting and seeks to outline the research needs necessary to facilitate the implementation of the MEPDG in the North-West region.

Book Implementation Plan for the New Mechanistic empirical Pavement Design Guide

Download or read book Implementation Plan for the New Mechanistic empirical Pavement Design Guide written by Y. Richard Kim and published by . This book was released on 2007 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mechanistic Empirical Pavement Design Guide  MEPDG  Method Implemented to Estimate Damage in Flexible and Rigid Pavements

Download or read book Mechanistic Empirical Pavement Design Guide MEPDG Method Implemented to Estimate Damage in Flexible and Rigid Pavements written by Tenzin Gusto and published by . This book was released on 2016 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: The implementation of the Empirical-Mechanistic Pavement Design Guide (MEPDG) method for flexible and rigid pavements requires numerous input parameters. Most of these parameters can be easily determined while some require best estimates that are usually extracted from available literature. This thesis identifies the most critical input parameters in terms of their effects on the damage of pavements and their influence on the determination of the number of corrective maintenance cycles to be performed during the design life of pavements. It was found that for flexible pavement, change in the average monthly temperature by as little as results in large differences in the number of corrective maintenance cycles. Also, consistently with simple mechanics concepts, pavements on stiffer foundations performed better under the load and hence, required fewer number of the corrective maintenance cycles than those founded on more flexible soils. Also, variations in truck weights affected the outcome in terms of the estimated number of corrective maintenance cycles for flexible pavement. Hence, better estimates of the number of corrective maintenance cycles can be obtained when the analysis was based on larger numbers of truck samples. On the contrary, no significant difference in the final estimation of the number of corrective maintenance cycles was found for rigid pavements even when the average monthly temperatures were increased or decreased by as much as . Moreover, no major difference was observed when a larger sample of trucks was used as input for the analysis. Similarly, change in ambient temperature which is directly related to the differential temperature on the top and the bottom of the slab that may lead to the curling of the slab and faulting, was found not to be critical. Similar to the results obtained for flexible pavements, rigid pavement with stiffer foundation properties performed better in terms of the number of corrective maintenance cycles as they required fewer corrective maintenance cycles.

Book Implementation of the AASHTO Mechanistic empirical Pavement Design Guide and Software

Download or read book Implementation of the AASHTO Mechanistic empirical Pavement Design Guide and Software written by and published by . This book was released on 2014 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction -- Mechanistic-Empirical Pavement Design Guide and AASHTOWare Pavement ME Design (TM) Software Overview -- Survey of Agency Pavement Design Practices -- Common Elements of Agency Implementation Plans -- Case Examples of Agency Implementation -- Conclusions.

Book Nchrp Synthesis 401

    Book Details:
  • Author :
  • Publisher : Transportation Research Board
  • Release :
  • ISBN :
  • Pages : 154 pages

Download or read book Nchrp Synthesis 401 written by and published by Transportation Research Board. This book was released on with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Water in Road Structures

    Book Details:
  • Author : Andrew Dawson
  • Publisher : Springer Science & Business Media
  • Release : 2008-10-21
  • ISBN : 1402085621
  • Pages : 454 pages

Download or read book Water in Road Structures written by Andrew Dawson and published by Springer Science & Business Media. This book was released on 2008-10-21 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Only book world-wide addressing this topic. The principal output of the European co-operative Action on "Water Movements in Road Pavements & Embankments". Provides unique guidance on assessing water condition and its affects on road performance. Provides unique guidance on assessing and ameliorating contaminant movement in pavement groundwater. Written by leading experts in Europe.

Book Evaluation of Climatic Effects on Pavement Performance Using Mepdg

Download or read book Evaluation of Climatic Effects on Pavement Performance Using Mepdg written by Jhuma Saha and published by LAP Lambert Academic Publishing. This book was released on 2011-12 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decade, the design of both flexible and rigid pavements has been fundamentally evolving. This evolution includes the replacement of empirical design procedures, mainly based on different editions of the American Association of State Highway and Transportation Officials (AASHTO) Design Guide with mechanistic-based procedures, such as the Mechanistic Empirical Pavement Design Guide (MEPDG). This book includes my master thesis that I carried out at University of Alberta, Edmonton, Canada. This book attempts to explore the implementation of the Mechanistic Empirical Pavement Design Guide (MEPDG) in Canada. The content of this book can be categorized into two parts. First, it explores the effects of climate on pavement performance using the MEPDG. Second, it compares the MEPDG with AASHTO - 1993 based Alberta Transportation Pavement Design (ATPD) method. This book presents three novel methods to evaluate the quality of the climatic data files used for the MEPDG. This book also demonstrates the sensitivity of climatic factors on pavement performance. A typical flexible pavement section and climatic data files of different Canadian weather stations were used in this study.

Book Development and Implementation of a Mechanistic and Empirical Pavement Design Guide  MEPDG  for Rigid Pavements  phase 2

Download or read book Development and Implementation of a Mechanistic and Empirical Pavement Design Guide MEPDG for Rigid Pavements phase 2 written by Tyler Ley and published by . This book was released on 2014 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Local Calibration of Mechanistic Empirical Pavement Design Guide for North Eastern United States

Download or read book Local Calibration of Mechanistic Empirical Pavement Design Guide for North Eastern United States written by Shariq A. Momin and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mechanistic-Empirical Pavement Design Guide (MEPDG) developed under the National Cooperative Highway Research Program (NCHRP) 1-37A project is based on mechanistic-empirical analysis of the pavement structure to predict the performance of the pavement under different sets of conditions (traffic, structure and environment). MEPDG takes into account the advanced modeling concepts and pavement performance models in performing the analysis and design of pavement. The mechanistic part of the design concept relies on the application of engineering mechanics to calculate stresses, strains and deformations in the pavement structure induced by the vehicle loads. The empirical part of the concept is based on laboratory developed performance models that are calibrated with the observed distresses in the in-service pavements with known structural properties, traffic loadings, and performances. These models in the MEPDG were calibrated using a national database of pavement performance data (Long Term Pavement Performance, LTPP) and will provide design solution for pavements with a national average performance. In order to improve the performance prediction of the models and the efficiency of the design for a given state, it is necessary to calibrate it to local conditions by taking into consideration locally available materials, traffic information and the environmental conditions. The objective of this study was to calibrate the MEPDG flexible pavement performance models to local conditions of Northeastern region of United States. To achieve this, seventeen pavement sections were selected for the calibration process and the relevant data (structural, traffic, climatic and pavement performance) was obtained from the LTPP database. MEPDG software (Version 1.1) simulation runs were made using the nationally calibrated coefficients and the MEPDG predicted distresses were compared with the LTPP measured distresses (rutting, alligator and longitudinal cracking, thermal cracking and IRI). The predicted distresses showed fair agreement with the measured distresses but still significant differences were found. The difference between the measured and the predicted distresses were minimized through recalibration of the MEPDG distress models. For the permanent deformation models of each layer, a simple linear regression with no intercept was performed and a new set of model coefficients (ßr1, ßGB, and ßSG) for asphalt concrete, granular base and subgrade layer models were calculated. The calibration of alligator (bottom-up fatigue cracking) and longitudinal (topdown fatigue cracking) was done by deriving the appropriate model coefficients (C1, C2, and C4) since the fatigue damage is given in MEDPG software output. Thermal cracking model was not calibrated since the measured transverse cracking data in the LTPP database did not increase with time, as expected to increase with time. The calibration of IRI model was done by computing the model coefficients (C1, C2, C3, and C4) based on other distresses (rutting, total fatigue cracking, and transverse cracking) by performing a simple linear regression.

Book Advances in Materials and Pavement Performance Prediction II

Download or read book Advances in Materials and Pavement Performance Prediction II written by K. Anupam and published by CRC Press. This book was released on 2020-12-08 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inspired from the legacy of the previous four 3DFEM conferences held in Delft and Athens as well as the successful 2018 AM3P conference held in Doha, the 2020 AM3P conference continues the pavement mechanics theme including pavement models, experimental methods to estimate model parameters, and their implementation in predicting pavement performance. The AM3P conference is organized by the Standing International Advisory Committee (SIAC), at the time of this publication chaired by Professors Tom Scarpas, Eyad Masad, and Amit Bhasin. Advances in Materials and Pavement Performance Prediction II includes over 111 papers presented at the 2020 AM3P Conference. The technical topics covered include: - rigid pavements - pavement geotechnics - statistical and data tools in pavement engineering - pavement structures - asphalt mixtures - asphalt binders The book will be invaluable to academics and engineers involved or interested in pavement engineering, pavement models, experimental methods to estimate model parameters, and their implementation in predicting pavement performance.

Book Preparation for Implementation of the Mechanistic empirical Pavement Design Guide in Michigan

Download or read book Preparation for Implementation of the Mechanistic empirical Pavement Design Guide in Michigan written by Syed Waqar Haider and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of Part 3 was to locally calibrate and validate the mechanistic-empirical pavement design guide (Pavement-ME) performance models to Michigan conditions. The local calibration of the performance models in the Pavement-ME is a challenging task, especially due to data limitations. A total of 108 and 20 reconstruct flexible and rigid pavement candidate projects, respectively, were selected. Similarly, a total of 33 and 8 rehabilitated pavement projects for flexible and rigid pavements, respectively were selected for the local calibration. The selection process considered pavement type, age, geographical location, and number of condition data collection cycles. The selected set of pavement section met the following data requirements (a) adequate number of sections for each performance model, (b) a wide range of inputs related to traffic, climate, design and material characterization, (c) a reasonable extent and occurrence of observed condition data over time. The national calibrated performance models were evaluated by using the data for the selected pavement sections. The results showed that the global models in the Pavement-ME don't adequately predict pavement performance for Michigan conditions. Therefore, local calibration of the models is essential. The local calibrations for all performance prediction models for flexible and rigid pavements were performed for multiple datasets (reconstruct, rehabilitation and a combination of both) and using robust statistical techniques (e.g. repeated split sampling and bootstrapping). The results of local calibration and validation of various models show that the locally calibrated model significantly improve the performance predictions for Michigan conditions. The local calibration coefficients for all performance models are documented in the report. The report also includes the recommendations on the most appropriate calibration coefficients for each of the performance models in Michigan along with the future guidelines and data needs.