EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book The Analytics of Risk Model Validation

Download or read book The Analytics of Risk Model Validation written by George A. Christodoulakis and published by Elsevier. This book was released on 2007-11-14 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Risk model validation is an emerging and important area of research, and has arisen because of Basel I and II. These regulatory initiatives require trading institutions and lending institutions to compute their reserve capital in a highly analytic way, based on the use of internal risk models. It is part of the regulatory structure that these risk models be validated both internally and externally, and there is a great shortage of information as to best practise. Editors Christodoulakis and Satchell collect papers that are beginning to appear by regulators, consultants, and academics, to provide the first collection that focuses on the quantitative side of model validation. The book covers the three main areas of risk: Credit Risk and Market and Operational Risk.*Risk model validation is a requirement of Basel I and II *The first collection of papers in this new and developing area of research *International authors cover model validation in credit, market, and operational risk

Book Credit Risk Analytics

Download or read book Credit Risk Analytics written by Bart Baesens and published by John Wiley & Sons. This book was released on 2016-10-03 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: The long-awaited, comprehensive guide to practical credit risk modeling Credit Risk Analytics provides a targeted training guide for risk managers looking to efficiently build or validate in-house models for credit risk management. Combining theory with practice, this book walks you through the fundamentals of credit risk management and shows you how to implement these concepts using the SAS credit risk management program, with helpful code provided. Coverage includes data analysis and preprocessing, credit scoring; PD and LGD estimation and forecasting, low default portfolios, correlation modeling and estimation, validation, implementation of prudential regulation, stress testing of existing modeling concepts, and more, to provide a one-stop tutorial and reference for credit risk analytics. The companion website offers examples of both real and simulated credit portfolio data to help you more easily implement the concepts discussed, and the expert author team provides practical insight on this real-world intersection of finance, statistics, and analytics. SAS is the preferred software for credit risk modeling due to its functionality and ability to process large amounts of data. This book shows you how to exploit the capabilities of this high-powered package to create clean, accurate credit risk management models. Understand the general concepts of credit risk management Validate and stress-test existing models Access working examples based on both real and simulated data Learn useful code for implementing and validating models in SAS Despite the high demand for in-house models, there is little comprehensive training available; practitioners are left to comb through piece-meal resources, executive training courses, and consultancies to cobble together the information they need. This book ends the search by providing a comprehensive, focused resource backed by expert guidance. Credit Risk Analytics is the reference every risk manager needs to streamline the modeling process.

Book Risk Model Validation

Download or read book Risk Model Validation written by Peter Quell and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Understanding and Managing Model Risk

Download or read book Understanding and Managing Model Risk written by Massimo Morini and published by John Wiley & Sons. This book was released on 2011-10-20 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to the validation and risk management of quantitative models used for pricing and hedging Whereas the majority of quantitative finance books focus on mathematics and risk management books focus on regulatory aspects, this book addresses the elements missed by this literature--the risks of the models themselves. This book starts from regulatory issues, but translates them into practical suggestions to reduce the likelihood of model losses, basing model risk and validation on market experience and on a wide range of real-world examples, with a high level of detail and precise operative indications.

Book The Validation of Risk Models

Download or read book The Validation of Risk Models written by S. Scandizzo and published by Springer. This book was released on 2016-07-01 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a one-stop-shop reference for risk management practitioners involved in the validation of risk models. It is a comprehensive manual about the tools, techniques and processes to be followed, focused on all the models that are relevant in the capital requirements and supervisory review of large international banks.

Book Managing Model Risk

    Book Details:
  • Author : Bart Baesens
  • Publisher :
  • Release : 2021-06-30
  • ISBN :
  • Pages : 283 pages

Download or read book Managing Model Risk written by Bart Baesens and published by . This book was released on 2021-06-30 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get up to speed on identifying and tackling model risk! Managing Model Risk provides data science practitioners, business professionals and analytics managers with a comprehensive guide to understand and tackle the fundamental concept of analytical model risk in terms of data, model specification, model development, model validation, model operationalization, model security and model management. Providing state of the art industry and research insights based on the author''s extensive experience, this illustrated textbook has a well-balanced theory-practice focus and covers all essential topics. Key Features: Extensive coverage of important trending topics and their risk impact on analytical models, starting from the raw data up until the operationalization, security and management. Various examples and case studies to highlight the topics discussed. Key references to background literature for further clarification. An online website with various add-ons and recent developments: www.managingmodelriskbook.com. What Makes this Book Different? This book is based on both authors having worked in analytics for more than 30 years combined, both in industry and academia. Both authors have co-authored more than 300 scientific publications on analytics and machine learning and have worked with firms in different industries, including (online) retailers, financial institutions, manufacturing firms, insurance providers, governments, etc. all over the globe estimating, deploying and validating analytical models. Throughout this time, we have read many books about analytical modeling and data science, which are typically written from the perspective of a theorist, providing lots of details with regards to different model algorithms and related mathematics, but with limited attention being given to how such models are used in practice. If such concerns are tackled, it is mainly from an implementation, use case or data engineering perspective. From our own experience, however, we have encountered many cases where analytics, AI, machine learning etc. fail in organizations, even with skilled people working on them, due to a myriad of reasons: bad data quality, difficulties in terms of model deployment, lack of model buy-in, incorrect definitions of underlying goals, wrong evaluation metrics, unrealistic expectations and many other issues can arise which cause models to fail in practice. Most of these issues have nothing to do with the actual algorithm being used to construct the model, but rather with everything else surrounding it: data, governance, maintenance, business, management, the economy, budgeting, culture etc. As such, we wanted to offer a new perspective with this book: it aims to provide a unique mix of both practical and research-based insights and report on do''s and don''ts for model risk management. Model risk issues are not only highlighted but also recommendations are given on how to deal with them, where possible. Target Audience This book is targeted towards everyone who has previously been exposed to both predictive and descriptive analytics. The reader should hence have some basic understanding of the analytics process model, the key activities of data preprocessing, the steps involved in developing a predictive analytics model (using e.g. linear or logistic regression, decision trees, etc.) and a descriptive analytics model (using e.g. association or sequence rules or clustering techniques). It is also important to be aware of how an analytical model can be properly evaluated, both in terms of accuracy and interpretation. This book aims to offer a comprehensive guide for both data scientists as well as (C-level) executives and data science or engineering leads, decision-makers and managers who want to know the key underlying concepts of analytical model risk.

Book Modern Financial Engineering  Counterparty  Credit  Portfolio And Systemic Risks

Download or read book Modern Financial Engineering Counterparty Credit Portfolio And Systemic Risks written by Giuseppe Orlando and published by World Scientific. This book was released on 2021-12-28 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book offers an overview of credit risk modeling and management. A three-step approach is adopted with the contents, after introducing the essential concepts of both mathematics and finance.Initially the focus is on the modeling of credit risk parameters mainly at the level of individual debtor and transaction, after which the book delves into counterparty credit risk, thus providing the link between credit and market risks. The second part is aimed at the portfolio level when multiple loans are pooled and default correlation becomes an important factor to consider and model. In this respect, the book explains how copulas help in modeling. The final stage is the macro perspective when the combination of credit risks related to financial institutions produces systemic risk and affects overall financial stability.The entire approach is two-dimensional as well. First, all modeling steps have replicable programming codes both in R and Matlab. In this way, the reader can experience the impact of changing the default probabilities of a given borrower or the weights of a sector. Second, at each stage, the book discusses the regulatory environment. This is because, at times, regulation can have stricter constraints than the outcome of internal models. In summary, the book guides the reader in modeling and managing credit risk by providing both the theoretical framework and the empirical tools necessary for a modern finance professional. In this sense, the book is aimed at a wide audience in all fields of study: from quants who want to engage in finance to economists who want to learn about coding and modern financial engineering.

Book Credit Risk Management

Download or read book Credit Risk Management written by Tony Van Gestel and published by Oxford University Press. This book was released on 2009 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first of three volumes on credit risk management, providing a thorough introduction to financial risk management and modelling.

Book Model Risk Management with SAS

Download or read book Model Risk Management with SAS written by SAS and published by SAS Institute. This book was released on 2020-06-29 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cut through the complexity of model risk management with a guide to solutions from SAS! There is an increasing demand for more model governance and model risk awareness. At the same time, high-performing models are expected to be deployed faster than ever. SAS Model Risk Management is a user-friendly, web-based application that facilitates the capture and life cycle management of statistical model-related information. It enables all stakeholders in the model life cycle — developers, validators, internal audit, and management – to get overview reports as well as detailed information in one central place. Model Risk Management with SAS introduces you to the features and capabilities of this software, including the entry, collection, transfer, storage, tracking, and reporting of models that are drawn from multiple lines of business across an organization. This book teaches key concepts, terminology, and base functionality that are integral to SAS Model Risk Management through hands-on examples and demonstrations. With this guide to SAS Model Risk Management, your organization can be confident it is making fact-based decisions and mitigating model risk.

Book Credit Risk Analytics

    Book Details:
  • Author : Harald Scheule
  • Publisher : Createspace Independent Publishing Platform
  • Release : 2017-11-23
  • ISBN : 9781977760869
  • Pages : 264 pages

Download or read book Credit Risk Analytics written by Harald Scheule and published by Createspace Independent Publishing Platform. This book was released on 2017-11-23 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Credit risk analytics in R will enable you to build credit risk models from start to finish. Accessing real credit data via the accompanying website www.creditriskanalytics.net, you will master a wide range of applications, including building your own PD, LGD and EAD models as well as mastering industry challenges such as reject inference, low default portfolio risk modeling, model validation and stress testing. This book has been written as a companion to Baesens, B., Roesch, D. and Scheule, H., 2016. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. John Wiley & Sons.

Book IFRS 9 and CECL Credit Risk Modelling and Validation

Download or read book IFRS 9 and CECL Credit Risk Modelling and Validation written by Tiziano Bellini and published by Academic Press. This book was released on 2019-01-31 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: IFRS 9 and CECL Credit Risk Modelling and Validation covers a hot topic in risk management. Both IFRS 9 and CECL accounting standards require Banks to adopt a new perspective in assessing Expected Credit Losses. The book explores a wide range of models and corresponding validation procedures. The most traditional regression analyses pave the way to more innovative methods like machine learning, survival analysis, and competing risk modelling. Special attention is then devoted to scarce data and low default portfolios. A practical approach inspires the learning journey. In each section the theoretical dissertation is accompanied by Examples and Case Studies worked in R and SAS, the most widely used software packages used by practitioners in Credit Risk Management.

Book Fair Lending Compliance

Download or read book Fair Lending Compliance written by Clark R. Abrahams and published by John Wiley & Sons. This book was released on 2008-03-14 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for Fair Lending ComplianceIntelligence and Implications for Credit Risk Management "Brilliant and informative. An in-depth look at innovative approaches to credit risk management written by industry practitioners. This publication will serve as an essential reference text for those who wish to make credit accessible to underserved consumers. It is comprehensive and clearly written." --The Honorable Rodney E. Hood "Abrahams and Zhang's timely treatise is a must-read for all those interested in the critical role of credit in the economy. They ably explore the intersection of credit access and credit risk, suggesting a hybrid approach of human judgment and computer models as the necessary path to balanced and fair lending. In an environment of rapidly changing consumer demographics, as well as regulatory reform initiatives, this book suggests new analytical models by which to provide credit to ensure compliance and to manage enterprise risk." --Frank A. Hirsch Jr., Nelson Mullins Riley & Scarborough LLP Financial Services Attorney and former general counsel for Centura Banks, Inc. "This book tackles head on the market failures that our current risk management systems need to address. Not only do Abrahams and Zhang adeptly articulate why we can and should improve our systems, they provide the analytic evidence, and the steps toward implementations. Fair Lending Compliance fills a much-needed gap in the field. If implemented systematically, this thought leadership will lead to improvements in fair lending practices for all Americans." --Alyssa Stewart Lee, Deputy Director, Urban Markets Initiative The Brookings Institution "[Fair Lending Compliance]...provides a unique blend of qualitative and quantitative guidance to two kinds of financial institutions: those that just need a little help in staying on the right side of complex fair housing regulations; and those that aspire to industry leadership in profitably and responsibly serving the unmet credit needs of diverse businesses and consumers in America's emerging domestic markets." --Michael A. Stegman, PhD, The John D. and Catherine T. MacArthur Foundation, Duncan MacRae '09 and Rebecca Kyle MacRae Professor of Public Policy Emeritus, University of North Carolina at Chapel Hill

Book Financial Risk Management

Download or read book Financial Risk Management written by Jimmy Skoglund and published by John Wiley & Sons. This book was released on 2015-09-04 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: A global banking risk management guide geared toward the practitioner Financial Risk Management presents an in-depth look at banking risk on a global scale, including comprehensive examination of the U.S. Comprehensive Capital Analysis and Review, and the European Banking Authority stress tests. Written by the leaders of global banking risk products and management at SAS, this book provides the most up-to-date information and expert insight into real risk management. The discussion begins with an overview of methods for computing and managing a variety of risk, then moves into a review of the economic foundation of modern risk management and the growing importance of model risk management. Market risk, portfolio credit risk, counterparty credit risk, liquidity risk, profitability analysis, stress testing, and others are dissected and examined, arming you with the strategies you need to construct a robust risk management system. The book takes readers through a journey from basic market risk analysis to major recent advances in all financial risk disciplines seen in the banking industry. The quantitative methodologies are developed with ample business case discussions and examples illustrating how they are used in practice. Chapters devoted to firmwide risk and stress testing cross reference the different methodologies developed for the specific risk areas and explain how they work together at firmwide level. Since risk regulations have driven a lot of the recent practices, the book also relates to the current global regulations in the financial risk areas. Risk management is one of the fastest growing segments of the banking industry, fueled by banks' fundamental intermediary role in the global economy and the industry's profit-driven increase in risk-seeking behavior. This book is the product of the authors' experience in developing and implementing risk analytics in banks around the globe, giving you a comprehensive, quantitative-oriented risk management guide specifically for the practitioner. Compute and manage market, credit, asset, and liability risk Perform macroeconomic stress testing and act on the results Get up to date on regulatory practices and model risk management Examine the structure and construction of financial risk systems Delve into funds transfer pricing, profitability analysis, and more Quantitative capability is increasing with lightning speed, both methodologically and technologically. Risk professionals must keep pace with the changes, and exploit every tool at their disposal. Financial Risk Management is the practitioner's guide to anticipating, mitigating, and preventing risk in the modern banking industry.

Book Risk Management and Simulation

Download or read book Risk Management and Simulation written by Aparna Gupta and published by CRC Press. This book was released on 2016-04-19 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: The challenges of the current financial environment have revealed the need for a new generation of professionals who combine training in traditional finance disciplines with an understanding of sophisticated quantitative and analytical tools. Risk Management and Simulation shows how simulation modeling and analysis can help you solve risk managemen

Book Advanced Concepts In Nuclear Energy Risk Assessment And Management

Download or read book Advanced Concepts In Nuclear Energy Risk Assessment And Management written by Tunc Aldemir and published by World Scientific. This book was released on 2018-04-25 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past 30 years, numerous concerns have been raised in the literature regarding the capability of static modeling approaches such as the event-tree (ET)/fault-tree (FT) methodology to adequately account for the impact of process/hardware/software/firmware/human interactions on nuclear power plant safety assessment, and methodologies to augment the ET/FT approach have been proposed. Often referred to as dynamic probabilistic risk/safety assessment (DPRA/DPSA) methodologies, which use a time-dependent phenomenological model of system evolution along with a model of its stochastic behavior to model for possible dependencies among failure events. The book contains a collection of papers that describe at existing plant level applicable DPRA/DPSA tools, as well as techniques that can be used to augment the ET/FT approach when needed.

Book Public Policy Analytics

Download or read book Public Policy Analytics written by Ken Steif and published by CRC Press. This book was released on 2021-08-18 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Public Policy Analytics: Code & Context for Data Science in Government teaches readers how to address complex public policy problems with data and analytics using reproducible methods in R. Each of the eight chapters provides a detailed case study, showing readers: how to develop exploratory indicators; understand ‘spatial process’ and develop spatial analytics; how to develop ‘useful’ predictive analytics; how to convey these outputs to non-technical decision-makers through the medium of data visualization; and why, ultimately, data science and ‘Planning’ are one and the same. A graduate-level introduction to data science, this book will appeal to researchers and data scientists at the intersection of data analytics and public policy, as well as readers who wish to understand how algorithms will affect the future of government.

Book Analytical Techniques in the Assessment of Credit Risk

Download or read book Analytical Techniques in the Assessment of Credit Risk written by Michalis Doumpos and published by Springer. This book was released on 2018-09-29 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unique, focused introduction to the analytical skills, methods and techniques in the assessment of credit risk that are necessary to tackle and analyze complex credit problems. It employs models and techniques from operations research and management science to investigate more closely risk models for applications within the banking industry and in financial markets. Furthermore, the book presents the advances and trends in model development and validation for credit scoring/rating, the recent regulatory requirements and the current best practices. Using examples and fully worked case applications, the book is a valuable resource for advanced courses in financial risk management, but also helpful to researchers and professionals working in financial and business analytics, financial modeling, credit risk analysis, and decision science.