EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Introduction to Flapping Wing Aerodynamics

Download or read book An Introduction to Flapping Wing Aerodynamics written by Wei Shyy and published by Cambridge University Press. This book was released on 2013-08-19 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: For anyone interested in the aerodynamics, structural dynamics and flight dynamics of small birds, bats, insects and air vehicles (MAVs).

Book Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications

Download or read book Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications written by Thomas J. Mueller and published by AIAA. This book was released on 2001 with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title reports on the latest research in the area of aerodynamic efficency of various fixed-wing, flapping wing, and rotary wing concepts. It presents the progress made by over fifty active researchers in the field.

Book Flapping Wing Vehicles

Download or read book Flapping Wing Vehicles written by Lung-Jieh Yang and published by CRC Press. This book was released on 2021-09-30 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flapping wing vehicles (FWVs) have unique flight characteristics and the successful flight of such a vehicle depends upon efficient design of the flapping mechanisms while keeping the minimum weight of the structure. Flapping Wing Vehicles: Numerical and Experimental Approach discusses design and kinematic analysis of various flapping wing mechanisms, measurement of flap angle/flapping frequency, and computational fluid dynamic analysis of motion characteristics including manufacturing techniques. The book also includes wind tunnel experiments, high-speed photographic analysis of aerodynamic performance, soap film visualization of 3D down washing, studies on the effect of wing rotation, figure-of-eight motion characteristics, and more. Features Covers all aspects of FWVs needed to design one and understand how and why it flies Explains related engineering practices including flapping mechanism design, kinematic analysis, materials, manufacturing, and aerodynamic performance measures using wind tunnel experiments Includes CFD analysis of 3D wing profile, formation flight of FWVs, and soap film visualization of flapping wings Discusses dynamics and image-based control of a group of ornithopters Explores indigenous PCB design for achieving altitude and attitude control This book is aimed at researchers and graduate students in mechatronics, materials, aerodynamics, robotics, biomimetics, vehicle design and MAV/UAV.

Book The Aerodynamics of Flapping Wings

Download or read book The Aerodynamics of Flapping Wings written by Sanjay Prafullachandra Sane and published by . This book was released on 2001 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The DelFly

Download or read book The DelFly written by G.C.H.E. de Croon and published by Springer. This book was released on 2015-11-26 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the topics most relevant to autonomously flying flapping wing robots: flapping-wing design, aerodynamics, and artificial intelligence. Readers can explore these topics in the context of the "Delfly", a flapping wing robot designed at Delft University in The Netherlands. How are tiny fruit flies able to lift their weight, avoid obstacles and predators, and find food or shelter? The first step in emulating this is the creation of a micro flapping wing robot that flies by itself. The challenges are considerable: the design and aerodynamics of flapping wings are still active areas of scientific research, whilst artificial intelligence is subject to extreme limitations deriving from the few sensors and minimal processing onboard. This book conveys the essential insights that lie behind success such as the DelFly Micro and the DelFly Explorer. The DelFly Micro, with its 3.07 grams and 10 cm wing span, is still the smallest flapping wing MAV in the world carrying a camera, whilst the DelFly Explorer is the world's first flapping wing MAV that is able to fly completely autonomously in unknown environments. The DelFly project started in 2005 and ever since has served as inspiration, not only to many scientific flapping wing studies, but also the design of flapping wing toys. The combination of introductions to relevant fields, practical insights and scientific experiments from the DelFly project make this book a must-read for all flapping wing enthusiasts, be they students, researchers, or engineers.

Book Distinct Aerodynamics of Insect Scale Flight

Download or read book Distinct Aerodynamics of Insect Scale Flight written by Csaba Hefler and published by Cambridge University Press. This book was released on 2021-05-27 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: Insect-scale flapping wing flight vehicles can conduct environmental monitoring, disaster assessment, mapping, positioning and security in complex and challenging surroundings. To develop bio-inspired flight vehicles, systematic probing based on the particular category of flight vehicles is needed. This Element addresses the aerodynamics, aeroelasticity, geometry, stability and dynamics of flexible flapping wings in the insect flight regime. The authors highlight distinct features and issues, contrast aerodynamic stability between rigid and flexible wings, present the implications of the wing-aspect ratio, and use canonical models and dragonflies to elucidate scientific insight as well as technical capabilities of bio-inspired design.

Book Aerodynamics of Low Reynolds Number Flyers

Download or read book Aerodynamics of Low Reynolds Number Flyers written by Wei Shyy and published by Cambridge University Press. This book was released on 2011-04-28 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low Reynolds number aerodynamics is important to a number of natural and man-made flyers. Birds, bats, and insects have been of interest to biologists for years, and active study in the aerospace engineering community, motivated by interest in micro air vehicles (MAVs), has been increasing rapidly. The primary focus of this book is the aerodynamics associated with fixed and flapping wings. The book consider both biological flyers and MAVs, including a summary of the scaling laws-which relate the aerodynamics and flight characteristics to a flyer's sizing on the basis of simple geometric and dynamics analyses, structural flexibility, laminar-turbulent transition, airfoil shapes, and unsteady flapping wing aerodynamics. The interplay between flapping kinematics and key dimensionless parameters such as the Reynolds number, Strouhal number, and reduced frequency is highlighted. The various unsteady lift enhancement mechanisms are also addressed, including leading-edge vortex, rapid pitch-up and rotational circulation, wake capture, and clap-and-fling.

Book Unsteady Aerodynamics and Propulsive Characteristics of Flapping Wings with Applications to Avian Fight  sic

Download or read book Unsteady Aerodynamics and Propulsive Characteristics of Flapping Wings with Applications to Avian Fight sic written by Michael Shawn Vest and published by . This book was released on 1996 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Propulsive forces can be generated with flapping or heaving wings traveling through a fluid, as demonstrated in animal flight. The flow field of a bird in flight is one of the most complex aerodynamic problems that can be examined. Many other bird flight theories are based on quasi-steady fluid dynamic assumptions even though the flow field is inherently unsteady. To help examine the time dependency of bird flight, an unsteady three dimensional potential flow panel code was developed. Another problem in studying the aerodynamics of avian flight is the limited amount of quantitative experimental data on flapping wings. To gain further understanding of avian flight and to develop an experimental database for comparison of the fluid dynamic model, a mechanical bird was constructed and placed in a wind tunnel. The mechanical bird, modeled after a pigeon, is capable of flapping at various angles to the freestream flow. For the current study, however, the flapping motion was limited to a plane normal to the oncoming flow. Results of the numerical model were compared to the measured forces on the mechanical bird as well as to the limited data available on real birds. In one case, the model was applied to a flapping wing in a wind tunnel at high advance ratios $(J=4.31)$ where the computed average lift and thrust were within the error bounds of the experimental data. The model was also applied to high frequency flapping flight $(J=0.76)$ of a pigeon flying in a wind tunnel, where the predicted lift matched the weight of the bird. Time histories of the mechanical pigeon agreed well with the numerical predictions for high $(J=5.38)$ and low $(J=0.84)$ advance ratios. The model was also extended to examine the effect of wing twist on flight efficiencies. Flight characteristics of the mechanical bird and a real pigeon were also compared.

Book Aerial Robots

    Book Details:
  • Author : Omar D Lopez Mejia
  • Publisher : BoD – Books on Demand
  • Release : 2017-09-06
  • ISBN : 9535134639
  • Pages : 196 pages

Download or read book Aerial Robots written by Omar D Lopez Mejia and published by BoD – Books on Demand. This book was released on 2017-09-06 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Few years ago, the topic of aerial robots was exclusively related to the robotics community, so a great number of books about the dynamics and control of aerial robots and UAVs have been written. As the control technology for UAVs advances, the great interaction that exists between other systems and elements that are as important as control such as aerodynamics, energy efficiency, acoustics, structural integrity, and applications, among others has become evident. Aerial Robots - Aerodynamics, Control, and Applications is an attempt to bring some of these topics related to UAVs together in just one book and to look at a selection of the most relevant problems of UAVs in a broader engineering perspective.

Book An Introduction to Flapping Wing Aerodynamics

Download or read book An Introduction to Flapping Wing Aerodynamics written by Wei Shyy and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Aerodynamics of Flexible Flapping Flight

Download or read book The Aerodynamics of Flexible Flapping Flight written by Liang Zhao and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: I used a dynamically scaled mechanical model of flapping flight to measure the aerodynamic forces on flapping wings of variable flexural stiffness (EI). For low to medium angles of attack, as flexibility of the wing increases, its ability to generate aerodynamic forces decreases monotonically but its lift-to-drag ratios remain approximately constant. The instantaneous force traces reveal no major differences in the underlying modes of force generation for flexible and rigid wings, but the magnitude of force, the angle of net force vector and center of pressure all vary systematically with wing flexibility. Even a rudimentary framework of wing veins is sufficient to restore the ability of flexible wings to generate forces at near-rigid values. Thus, the magnitude of force generation can be controlled by modulating the trailing edge flexibility and thereby controlling the magnitude of the leading edge vorticity. To characterize this, we have generated a detailed database of aerodynamic forces as a function of several variables including material properties, kinematics, aerodynamic forces and centre of pressure, which can also be used to help validate computational models of aeroelastic flapping wings. I also investigated inertial and aerodynamic power consumption during hovering flight of the hawk moth Manduca sexta. The aerodynamic power was estimated based on the aerodynamic torques measured on model hawk-moth wings and hovering kinematics. The inertial power was estimated based on the measured wing mass distribution and hovering kinematics. The results suggest that wing inertial power (without consideration of muscle efficiency and elastic energy storage) consumes about half of the total power expenditure. Wing areal mass density was measured to decrease sharply from the leading edge toward the trailing edge and from the wing base to the wing tip. Such a structural property helps to minimize the wing moment of inertia given a fixed amount of mass. We measured the aerodynamic forces on the rigid and flexible wings, which were made to approximate the flexural stiffness (EI) distribution and deformation of moth wings. It has been found that wings with the characteristic spanwise and chordwise decreasing EI (and mass density) are beneficial for power efficiency while generating aerodynamic forces comparative to rigid wings. Furthermore, negative work to aid pitching in stroke reversals from aerodynamic forces was found, and it showed that the aerodynamic force contributes partially to passive pitching of the wing. Wings flapping at high angles of attack generate stable leading edge vorticity, which persists throughout the stroke and enhances mean aerodynamic forces. Here, we show that aerodynamic forces can be controlled by altering the trailing edge flexibility of a flapping wing as discussed in the first experiment. Model tests on flexible and rigid wings show that the leading edge vortex can be greatly affected by the flexural stiffness. Rigid wings are coupled with strong leading edge and higher net force at the angle of attack tested. Flexible wings, due to the trailing edge bending, can easily meet the Kutta condition. Hence the strength of the leading edge vortex is weakened. The strong correlation among the wing flexion, leading edge vortex and the forces generation were found during the test. The aerodynamic force was substantially enhanced by adding a single carbon fiber vein on flexible wings. Both the force and leading edge vortex were increased dramatically.

Book Visualized Flow

    Book Details:
  • Author : Yasuki Nakayama
  • Publisher :
  • Release : 1988
  • ISBN :
  • Pages : 172 pages

Download or read book Visualized Flow written by Yasuki Nakayama and published by . This book was released on 1988 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flow Visualization always plays an important role in understanding flow phenomena and contributes significantly to the physical intuitive reasonong necessary to successfully apply the knowledge gained to real life situations. This book is designed to enhance the understanding of basic flow phenomena through over 200 high quality flow visualization photographs, some in colour, and explanations. The book opens with a summary of flow visualization methods, and then proceeds to present flow phenomena as revealed by various flow visualization techniques. The treatment ranges from fundamental aspects, such as laminar and turbulent flow, to engineering applications; for example, understanding why cavitation damage occurred on the runner of a Francis turbine. Current and new visualization techniques are employed such that invisible flow, as in air and water, is made clearly visible and comprehensible. Visualized Flow was compiled and edited under the guidance of the Japanese Society of Mechanical Engineers. This English edition will be indispensable to engineers, researchers and students in understanding flow phenomena across the wide range of sciences wherever fluid flow is important.

Book Advances in Robot Kinematics  Analysis and Design

Download or read book Advances in Robot Kinematics Analysis and Design written by Jadran Lenarčič and published by Springer Science & Business Media. This book was released on 2008-05-29 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the most recent research advances in the theory, design, control and application of robotic systems, which are intended for a variety of purposes such as manipulation, manufacturing, automation, surgery, locomotion and biomechanics.

Book Handbook of Force Transducers

Download or read book Handbook of Force Transducers written by Dan Mihai Ştefănescu and published by Springer Nature. This book was released on 2020-01-27 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part I introduces the basic “Principles and Methods of Force Measurement” according to a classification into a dozen of force transducerstypes: resistive, inductive, capacitive, piezoelectric, electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic (Hall-effect), vibrating wires, (micro)resonators, acoustic and gyroscopic. Two special chapters refer to force balance techniques and to combined methods in force measurement. Part II discusses the “(Strain Gauge) Force Transducers Components”, evolving from the classical force transducer to the digital / intelligent one, with the incorporation of three subsystems (sensors, electromechanics and informatics). The elastic element (EE) is the “heart” of the force transducer and basically determines its performance. A 12-type elastic element classification is proposed (stretched / compressed column or tube, bending beam, bending and/or torsion shaft, middle bent bar with fixed ends, shear beam, bending ring, yoke or frame, diaphragm, axial-stressed torus, axisymmetrical and voluminous EE), with emphasis on the optimum place of the strain gauges. The main properties of the associated Wheatstone bridge, best suited for the parametrical transducers, are examined, together with the appropriate electronic circuits for SGFTs. The handbook fills a gap in the field of Force Measurement, both experts and newcomers, no matter of their particular interest, finding a lot of useful and valuable subjects in the area of Force Transducers; in fact, it is the first specialized monograph in this inter- and multidisciplinary field.

Book Swimming and Flying in Nature

Download or read book Swimming and Flying in Nature written by Theodore Wu and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Symposium on Swimming and Flying in Nature which was held at the California Institute of Technology, Pasadena, California from July 8-12, 1974 was conceived with the objective of providing an interdisciplinary forum for the discussion of funda mental biological and fluid mechanical aspects of these forms of natura110comotion. It was the earnest hope of all concerned in the organization of the Symposium that the exchange of knowledge and interaction of ideas from the disciplines involved would stimu late new research in this developing field. If the liveliness of the discussion generated among the 250 or so participants is any measure, then this objective was fulfilled to a significant degree. These two companion volumes contain the manuscripts of the papers presented during the Symposium. It is hoped that this permanent record will serve to perpetuate the enthusiasm and active thought generated during those days in Pasadena. The first volume contains the proceedings of the first two days of the confer ence (Sessions I to IV) which concentrated on the locomotion of micro-organisms. The second volume (Sessions V to VIII) deals with the propulsion of larger fish, insects and birds. Professor Sir James Lighthill's Special Invited Lecture which opened the Symposium is contained in the second volume, rather than the first, since it deals with natural flight.

Book Low Speed Aerodynamics

    Book Details:
  • Author : Joseph Katz
  • Publisher : Cambridge University Press
  • Release : 2001-02-05
  • ISBN : 9780521665520
  • Pages : 636 pages

Download or read book Low Speed Aerodynamics written by Joseph Katz and published by Cambridge University Press. This book was released on 2001-02-05 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-speed aerodynamics is important in the design and operation of aircraft flying at low Mach number, and ground and marine vehicles. This 2001 book offers a modern treatment of the subject, both the theory of inviscid, incompressible, and irrotational aerodynamics and the computational techniques now available to solve complex problems. A unique feature of the text is that the computational approach (from a single vortex element to a three-dimensional panel formulation) is interwoven throughout. Thus, the reader can learn about classical methods of the past, while also learning how to use numerical methods to solve real-world aerodynamic problems. This second edition has a new chapter on the laminar boundary layer (emphasis on the viscous-inviscid coupling), the latest versions of computational techniques, and additional coverage of interaction problems. It includes a systematic treatment of two-dimensional panel methods and a detailed presentation of computational techniques for three-dimensional and unsteady flows. With extensive illustrations and examples, this book will be useful for senior and beginning graduate-level courses, as well as a helpful reference tool for practising engineers.

Book Flight Physics

Download or read book Flight Physics written by Konstantin Volkov and published by BoD – Books on Demand. This book was released on 2018-02-14 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on the synthesis of the fundamental disciplines and practical applications involved in the investigation, description, and analysis of aircraft flight including applied aerodynamics, aircraft propulsion, flight performance, stability, and control. The book covers the aerodynamic models that describe the forces and moments on maneuvering aircraft and provides an overview of the concepts and methods used in flight dynamics. Computational methods are widely used by the practicing aerodynamicist, and the book covers computational fluid dynamics techniques used to improve understanding of the physical models that underlie computational methods.