EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Synthesis  Structure and Electrochemistry of positive Insertion materials for rechargeable Lithium Batteries

Download or read book Synthesis Structure and Electrochemistry of positive Insertion materials for rechargeable Lithium Batteries written by Emmanuelle Angeline Raekelboom and published by . This book was released on 2002 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Synthesis  Structure and Electrochemistry of Positive Electrode Materials for Rechargeable Magnesium and Lithium Ion Batteries

Download or read book Synthesis Structure and Electrochemistry of Positive Electrode Materials for Rechargeable Magnesium and Lithium Ion Batteries written by Xiaoqi Sun and published by . This book was released on 2017 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: To meet the requirements for high energy density storage systems, rechargeable batteries based on the “beyond lithium ion” technologies have been widely investigated. The magnesium battery is a promising candidate benefiting from the utilization of a Mg metal negative electrode, which offers high volumetric capacity (3833 mAh mL-1), low redox potential (-2.37 V vs. S.H.E.), non-dendritic growth, low price and safe handling in atmosphere. However, the discovery of potential positive electrode materials beyond the seminal Mo6S8 has been limited, mainly due to the sluggish mobility of a divalent Mg2+ ion in solid frameworks. This thesis presents the research on both finding new positive electrode materials and investigating mechanisms to understand the limitation. Two structures of titanium sulfide are identified as the second family of Mg2+ insertion positive electrodes, offering almost twice the capacity of the benchmark Mo6S8. The facile Mg2+ solid diffusion is mainly supported by the polarizable lattices, while the crystal structure plays a critical rule on the specific diffusion mechanism, which further influences the electrochemistry. While sulfides provide moderate energy density, it can be largely increased by shifting to oxide materials. However, poor electrochemistry has been widely observed for oxide based Mg positive electrode materials. In the present thesis work, a case study with birnessite MnO2 identifies desolvation as a key factor limiting Mg2+ insertion into oxides from nonaqueous electrolytes, while another study with Mg2Mo3O8 demonstrates the strong influence of transition states on setting the magnitude of migration barriers. Those limitations have to be overcome to allow facile Mg2+ insertion into oxides. Alternative setups which would accomplish the advantages of a Mg negative electrode and avoid the sluggish Mg2+ solid diffusion include the Mg-Li hybrid system. Two “high voltage” Prussian blue analogues (average 2.3 V vs. Mg/Mg2+) are investigated as positive electrode materials in the thesis, both showing promising energy density and cycle life. Finally, novel positive electrode materials for Li-ion batteries are examined. The possibility of stabilizing lithium transition-metal silicate in the olivine structure is studied by combined atomistic scale simulation and solid state synthesis, suggesting a potential solution by cation substitution.

Book Consequences of Combinatorial Studies of Positive Electrodes for Li ion Batteries

Download or read book Consequences of Combinatorial Studies of Positive Electrodes for Li ion Batteries written by Eric McCalla and published by Springer Science & Business Media. This book was released on 2014-04-11 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Li-Co-Mn-Ni oxides have been of extreme interest as potential positive electrode materials for next generation Li-ion batteries. Though many promising materials have been discovered and studied extensively, much debate remains in the literature about the structures of these materials. There is no consensus as to whether the lithium-rich layered materials are single-phase or form a layered-layered composite on the few nanometer length-scales. Much of this debate came about because no phase diagrams existed to describe these systems under the synthesis conditions used to make electrode materials. Detailed in this thesis are the complete Li-Co-Mn-O and Li-Mn-Ni-O phase diagrams generated by way of the combinatorial synthesis of mg-scale samples at over five hundred compositions characterized with X-ray diffraction. Selected bulk samples were used to confirm that the findings are relevant to synthesis conditions used commercially. The results help resolve a number of points of confusion and contradiction in the literature. Amongst other important findings, the compositions and synthesis conditions giving rise to layered-layered nano-composites are presented and electrochemical results are used to show how better electrode materials can be achieved by making samples in the single phase-layered regions.

Book Materials for Lithium Ion Batteries

Download or read book Materials for Lithium Ion Batteries written by Christian Julien and published by Springer Science & Business Media. This book was released on 2000-10-31 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: A lithium-ion battery comprises essentially three components: two intercalation compounds as positive and negative electrodes, separated by an ionic-electronic electrolyte. Each component is discussed in sufficient detail to give the practising engineer an understanding of the subject, providing guidance on the selection of suitable materials in actual applications. Each topic covered is written by an expert, reflecting many years of experience in research and applications. Each topic is provided with an extensive list of references, allowing easy access to further information. Readership: Research students and engineers seeking an expert review. Graduate courses in electrical drives can also be designed around the book by selecting sections for discussion. The coverage and treatment make the book indispensable for the lithium battery community.

Book Electrodes for Li ion Batteries

Download or read book Electrodes for Li ion Batteries written by Laure Monconduit and published by John Wiley & Sons. This book was released on 2015-06-02 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: The electrochemical energy storage is a means to conserve electrical energy in chemical form. This form of storage benefits from the fact that these two energies share the same vector, the electron. This advantage allows us to limit the losses related to the conversion of energy from one form to another. The RS2E focuses its research on rechargeable electrochemical devices (or electrochemical storage) batteries and supercapacitors. The materials used in the electrodes are key components of lithium-ion batteries. Their nature depend battery performance in terms of mass and volume capacity, energy density, power, durability, safety, etc. This book deals with current and future positive and negative electrode materials covering aspects related to research new and better materials for future applications (related to renewable energy storage and transportation in particular), bringing light on the mechanisms of operation, aging and failure.

Book Na ion Batteries

    Book Details:
  • Author :
  • Publisher : John Wiley & Sons
  • Release : 2021-05-11
  • ISBN : 1789450136
  • Pages : 386 pages

Download or read book Na ion Batteries written by and published by John Wiley & Sons. This book was released on 2021-05-11 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers both the fundamental and applied aspects of advanced Na-ion batteries (NIB) which have proven to be a potential challenger to Li-ion batteries. Both the chemistry and design of positive and negative electrode materials are examined. In NIB, the electrolyte is also a crucial part of the batteries and the recent research, showing a possible alternative to classical electrolytes – with the development of ionic liquid-based electrolytes – is also explored. Cycling performance in NIB is also strongly associated with the quality of the electrode-electrolyte interface, where electrolyte degradation takes place; thus, Na-ion Batteries details the recent achievements in furthering knowledge of this interface. Finally, as the ultimate goal is commercialization of this new electrical storage technology, the last chapters are dedicated to the industrial point of view, given by two startup companies, who developed two different NIB chemistries for complementary applications and markets.

Book Electrochemistry of Insertion Materials for Hydrogen and Lithium

Download or read book Electrochemistry of Insertion Materials for Hydrogen and Lithium written by Su-Il Pyun and published by Springer. This book was released on 2014-09-20 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The understanding of hydrogen/lithium insertion phenomena is of great importance for the development of the next generation of functional electrochemical devices such as rechargeable batteries, electrochromic devices, and fuel cells. This volume introduces a variety of viable electrochemical methods to identify reaction mechanisms and evaluate relevant kinetic properties of insertion electrodes. The authors also outline various ways to analyze anomalous behaviour of hydrogen/lithium transport through insertion electrodes.

Book Elaboration of Novel Sulfate Based Positive Electrode Materials for Li ion Batteries

Download or read book Elaboration of Novel Sulfate Based Positive Electrode Materials for Li ion Batteries written by Meiling Sun and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing demand of our society for Li-ion batteries calls for the development of positive electrode materials, with specific requirements in terms of energy density, cost, and sustainability. In such a context, we explored four sulfate based compounds: a fluorosulfate - LiCuSO4F, and a family of oxysulfates - Fe2O(SO4)2, Li2Cu2O(SO4)2 and Li2VO(SO4)2. Herein their synthesis, structure, and electrochemical performances are presented for the first time. Being electrochemically inactive, LiCuSO4F displays an ordered triplite structure which is distinct from other fluorosulfates. The electrochemical activity of the oxysulfate compounds was explored towards lithium. Specifically, Fe2O(SO4)2 delivers a sustained reversible capacity of about 125 mA∙h/g at 3.0 V vs. Li+/Li0; Li2VO(SO4)2 and Li2Cu2O(SO4)2 respectively exhibit the highest potential of 4.7 V vs. Li+/Li0 among V- and Cu- based compounds. Last but not least, the Li2Cu2O(SO4)2 phase reveals the possibility of anionic electrochemical activity in a polyanionic positive electrode. Their physical properties, such as ionic conductivities and magnetic properties are also reported. Overall, this makes oxysulfates interesting to study as polyanionic positive electrodes for Li-ion batteries.

Book Synthesis and Characterization of Carbon Nanotube Modified Electrode Materials for Li ion Batteries

Download or read book Synthesis and Characterization of Carbon Nanotube Modified Electrode Materials for Li ion Batteries written by and published by . This book was released on 2009 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today, the Lithium ion (Li-ion) is the fastest growing and most promising rechargeable battery chemistry. For high current demands, there is an emphasis on the importance of very low cell resistance to allow unrestricted flow of current. The electrochemical performance of Li-ion batteries relies significantly on the properties of the cathode materials, the anode materials and the electrolytes. In this study, novel anode and cathode materials were synthesized and systematically studied for Li-ion battery application. Novel anode synthesis involved the substitution of the flat foil current collectors normally used by nano- or micro-wire arrays, as the higher surface area makes it possible to pack much more active material into an electrode. Ni or Cu wire arrays with wire thicknesses of 200 nm, 400 nm or 1 \03BCm were synthesised. Carbon nanotubes (CNTs) were chosen as the Li-insertion compound due to its high theoretical reversible lithium storage capacity. Synthesis of the Cu or Ni/CNT consolidated composite anodes were done using novel synthetic techniques, combining template synthesis via electrochemical deposition and chemical vapour deposition (CVD) techniques. XRD analysis of both the Ni and Cu wire arrays after carbon nanotube deposition, confirmed that the crystallinity of the wire arrays were not altered by the CVD of carbon nanotubes. The optimal results were obtained for the 200 nm Cu/CNT consolidated composite anode. The current density obtained for the Li de-intercalation (\03AFp) was 0.463 A/g. A reversible discharge capacity of 358 mAh/g was obtained in the subsequent charge/discharge cycling. The composite anode materials showed good charge/discharge cycling performances and a high capacity integrity was maintained in the cycling behaviour analyses.

Book Nanomaterials for Electrochemical Energy Storage Devices

Download or read book Nanomaterials for Electrochemical Energy Storage Devices written by Poulomi Roy and published by John Wiley & Sons. This book was released on 2019-10-14 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy storage devices are considered to be an important field of interest for researchers worldwide. Batteries and supercapacitors are therefore extensively studied and progressively evolving. The book not only emphasizes the fundamental theories, electrochemical mechanism and its computational view point, but also discusses recent developments in electrode designing based on nanomaterials, separators, fabrication of advanced devices and their performances.

Book Studies on Anionic Redox in Li Rich Cathode Materials of Li Ion Batteries

Download or read book Studies on Anionic Redox in Li Rich Cathode Materials of Li Ion Batteries written by Biao Li and published by Springer. This book was released on 2018-12-13 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents studies and discussions on anionic redox, which can be used to boost the capacities of cathode electrodes by providing extra electron transfer. This theoretically and practically significant book facilitates the implementation of anionic redox in electrodes for real-world use and accelerates the development of high-energy-density lithium-ion batteries. Lithium-ion batteries, as energy storage systems, are playing a more and more important role in powering modern society. However, their energy density is still limited by the low specific capacity of the cathode electrodes. Based on a profound understanding of band theory, the author has achieved considerable advances in tuning the redox process of lithium-rich electrodes to obtain enhanced electrochemical performance, identifying both the stability mechanism of anionic redox in lithium-rich cathode materials, and its activation mechanism in these electrode systems.

Book Neutron Radiography  3

Download or read book Neutron Radiography 3 written by Shigenori Fujine and published by Springer. This book was released on 1990-07-31 with total page 1046 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the Third World Conference held in Osaka, Japan, May 14-18, 1989

Book Lithium Batteries

    Book Details:
  • Author : Gholam-Abbas Nazri
  • Publisher : Springer Science & Business Media
  • Release : 2009-01-14
  • ISBN : 0387926747
  • Pages : 725 pages

Download or read book Lithium Batteries written by Gholam-Abbas Nazri and published by Springer Science & Business Media. This book was released on 2009-01-14 with total page 725 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lithium Batteries: Science and Technology is an up-to-date and comprehensive compendium on advanced power sources and energy related topics. Each chapter is a detailed and thorough treatment of its subject. The volume includes several tutorials and contributes to an understanding of the many fields that impact the development of lithium batteries. Recent advances on various components are included and numerous examples of innovation are presented. Extensive references are given at the end of each chapter. All contributors are internationally recognized experts in their respective specialty. The fundamental knowledge necessary for designing new battery materials with desired physical and chemical properties including structural, electronic and reactivity are discussed. The molecular engineering of battery materials is treated by the most advanced theoretical and experimental methods.

Book Nanomaterials for Lithium Ion Batteries

Download or read book Nanomaterials for Lithium Ion Batteries written by Rachid Yazami and published by CRC Press. This book was released on 2013-10-08 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the most recent advances in the science and technology of nanostructured materials for lithium-ion application. With contributions from renowned scientists and technologists, the chapters discuss state-of-the-art research on nanostructured anode and cathode materials, some already used in commercial batteries and others still in de