Download or read book Statistical Mechanics of Neural Networks written by Haiping Huang and published by Springer Nature. This book was released on 2022-01-04 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights a comprehensive introduction to the fundamental statistical mechanics underneath the inner workings of neural networks. The book discusses in details important concepts and techniques including the cavity method, the mean-field theory, replica techniques, the Nishimori condition, variational methods, the dynamical mean-field theory, unsupervised learning, associative memory models, perceptron models, the chaos theory of recurrent neural networks, and eigen-spectrums of neural networks, walking new learners through the theories and must-have skillsets to understand and use neural networks. The book focuses on quantitative frameworks of neural network models where the underlying mechanisms can be precisely isolated by physics of mathematical beauty and theoretical predictions. It is a good reference for students, researchers, and practitioners in the area of neural networks.
Download or read book Statistical Field Theory for Neural Networks written by Moritz Helias and published by Springer Nature. This book was released on 2020-08-20 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a self-contained introduction to techniques from field theory applied to stochastic and collective dynamics in neuronal networks. These powerful analytical techniques, which are well established in other fields of physics, are the basis of current developments and offer solutions to pressing open problems in theoretical neuroscience and also machine learning. They enable a systematic and quantitative understanding of the dynamics in recurrent and stochastic neuronal networks. This book is intended for physicists, mathematicians, and computer scientists and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge of analysis and linear algebra.
Download or read book Statistical Mechanics of Learning written by A. Engel and published by Cambridge University Press. This book was released on 2001-03-29 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learning is one of the things that humans do naturally, and it has always been a challenge for us to understand the process. Nowadays this challenge has another dimension as we try to build machines that are able to learn and to undertake tasks such as datamining, image processing and pattern recognition. We can formulate a simple framework, artificial neural networks, in which learning from examples may be described and understood. The contribution to this subject made over the last decade by researchers applying the techniques of statistical mechanics is the subject of this book. The authors provide a coherent account of various important concepts and techniques that are currently only found scattered in papers, supplement this with background material in mathematics and physics and include many examples and exercises to make a book that can be used with courses, or for self-teaching, or as a handy reference.
Download or read book Machine Learning with Neural Networks written by Bernhard Mehlig and published by Cambridge University Press. This book was released on 2021-10-28 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This modern and self-contained book offers a clear and accessible introduction to the important topic of machine learning with neural networks. In addition to describing the mathematical principles of the topic, and its historical evolution, strong connections are drawn with underlying methods from statistical physics and current applications within science and engineering. Closely based around a well-established undergraduate course, this pedagogical text provides a solid understanding of the key aspects of modern machine learning with artificial neural networks, for students in physics, mathematics, and engineering. Numerous exercises expand and reinforce key concepts within the book and allow students to hone their programming skills. Frequent references to current research develop a detailed perspective on the state-of-the-art in machine learning research.
Download or read book Neural Networks written by Berndt Müller and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks presents concepts of neural-network models and techniques of parallel distributed processing in a three-step approach: - A brief overview of the neural structure of the brain and the history of neural-network modeling introduces to associative memory, preceptrons, feature-sensitive networks, learning strategies, and practical applications. - The second part covers subjects like statistical physics of spin glasses, the mean-field theory of the Hopfield model, and the "space of interactions" approach to the storage capacity of neural networks. - The final part discusses nine programs with practical demonstrations of neural-network models. The software and source code in C are on a 3 1/2" MS-DOS diskette can be run with Microsoft, Borland, Turbo-C, or compatible compilers.
Download or read book An Introduction to the Theory of Spin Glasses and Neural Networks written by Viktor Dotsenko and published by World Scientific. This book was released on 1994 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to describe in simple terms the new area of statistical mechanics known as spin-glasses, encompassing systems in which quenched disorder is the dominant factor. The book begins with a non-mathematical explanation of the problem, and the modern understanding of the physics of the spin-glass state is formulated in general terms. Next, the 'magic' of the replica symmetry breaking scheme is demonstrated and the physics behind it discussed. Recent experiments on real spin-glass materials are briefly described to demonstrate how this somewhat abstract physics can be studied in the laboratory. The final chapters of the book are devoted to statistical models of neural networks.The material here is self-contained and should be accessible to students with a basic knowledge of theoretical physics and statistical mechanics. It has been used for a one-term graduate lecture course at the Landau Institute for Theoretical Physics.
Download or read book The Principles of Deep Learning Theory written by Daniel A. Roberts and published by Cambridge University Press. This book was released on 2022-05-26 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume develops an effective theory approach to understanding deep neural networks of practical relevance.
Download or read book Deep Learning and Physics written by Akinori Tanaka and published by Springer Nature. This book was released on 2021-03-24 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: What is deep learning for those who study physics? Is it completely different from physics? Or is it similar? In recent years, machine learning, including deep learning, has begun to be used in various physics studies. Why is that? Is knowing physics useful in machine learning? Conversely, is knowing machine learning useful in physics? This book is devoted to answers of these questions. Starting with basic ideas of physics, neural networks are derived naturally. And you can learn the concepts of deep learning through the words of physics. In fact, the foundation of machine learning can be attributed to physical concepts. Hamiltonians that determine physical systems characterize various machine learning structures. Statistical physics given by Hamiltonians defines machine learning by neural networks. Furthermore, solving inverse problems in physics through machine learning and generalization essentially provides progress and even revolutions in physics. For these reasons, in recent years interdisciplinary research in machine learning and physics has been expanding dramatically. This book is written for anyone who wants to learn, understand, and apply the relationship between deep learning/machine learning and physics. All that is needed to read this book are the basic concepts in physics: energy and Hamiltonians. The concepts of statistical mechanics and the bracket notation of quantum mechanics, which are explained in columns, are used to explain deep learning frameworks. We encourage you to explore this new active field of machine learning and physics, with this book as a map of the continent to be explored.
Download or read book Brain Inspired Computing written by Katrin Amunts and published by Springer Nature. This book was released on 2021-07-20 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book constitutes revised selected papers from the 4th International Workshop on Brain-Inspired Computing, BrainComp 2019, held in Cetraro, Italy, in July 2019. The 11 papers presented in this volume were carefully reviewed and selected for inclusion in this book. They deal with research on brain atlasing, multi-scale models and simulation, HPC and data infra-structures for neuroscience as well as artificial and natural neural architectures.
Download or read book Theory of Neural Information Processing Systems written by A.C.C. Coolen and published by OUP Oxford. This book was released on 2005-07-21 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of Neural Information Processing Systems provides an explicit, coherent, and up-to-date account of the modern theory of neural information processing systems. It has been carefully developed for graduate students from any quantitative discipline, including mathematics, computer science, physics, engineering or biology, and has been thoroughly class-tested by the authors over a period of some 8 years. Exercises are presented throughout the text and notes on historical background and further reading guide the student into the literature. All mathematical details are included and appendices provide further background material, including probability theory, linear algebra and stochastic processes, making this textbook accessible to a wide audience.
Download or read book Statistical Physics of Spin Glasses and Information Processing written by Hidetoshi Nishimori and published by Clarendon Press. This book was released on 2001 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This superb new book is one of the first publications in recent years to provide a broad overview of this interdisciplinary field. Most of the book is written in a self contained manner, assuming only a general knowledge of statistical mechanics and basic probabilty theory . It provides the reader with a sound introduction to the field and to the analytical techniques necessary to follow its most recent developments
Download or read book Introduction To The Theory Of Neural Computation written by John A. Hertz and published by CRC Press. This book was released on 2018-03-08 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive introduction to the neural network models currently under intensive study for computational applications. It also provides coverage of neural network applications in a variety of problems of both theoretical and practical interest.
Download or read book Computational Statistical Physics written by K.-H. Hoffmann and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years statistical physics has made significant progress as a result of advances in numerical techniques. While good textbooks exist on the general aspects of statistical physics, the numerical methods and the new developments based on large-scale computing are not usually adequately presented. In this book 16 experts describe the application of methods of statistical physics to various areas in physics such as disordered materials, quasicrystals, semiconductors, and also to other areas beyond physics, such as financial markets, game theory, evolution, and traffic planning, in which statistical physics has recently become significant. In this way the universality of the underlying concepts and methods such as fractals, random matrix theory, time series, neural networks, evolutionary algorithms, becomes clear. The topics are covered by introductory, tutorial presentations.
Download or read book A Concise Introduction to the Statistical Physics of Complex Systems written by Eric Bertin and published by Springer Science & Business Media. This book was released on 2011-09-28 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise primer (based on lectures given at summer schools on complex systems and on a masters degree course in complex systems modeling) will provide graduate students and newcomers to the field with the basic knowledge of the concepts and methods of statistical physics and its potential for application to interdisciplinary topics. Indeed, in recent years, statistical physics has begun to attract the interest of a broad community of researchers in the field of complex system sciences, ranging from biology to the social sciences, economics and computer science. More generally, a growing number of graduate students and researchers feel the need to learn some basic concepts and questions originating in other disciplines without necessarily having to master all of the corresponding technicalities and jargon. Generally speaking, the goals of statistical physics may be summarized as follows: on the one hand to study systems composed of a large number of interacting ‘entities’, and on the other to predict the macroscopic (or collective) behavior of the system considered from the microscopic laws ruling the dynamics of the individual ‘entities’. These two goals are, to some extent, also shared by what is nowadays called ‘complex systems science’ and for these reasons, systems studied in the framework of statistical physics may be considered as among the simplest examples of complex systems—allowing in addition a rather well developed mathematical treatment.
Download or read book Topics In Statistical Mechanics Second Edition written by Brian Cowan and published by World Scientific. This book was released on 2021-07-23 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on the material learned by students in their first few years of study, Topics in Statistical Mechanics (Second Edition) presents an advanced level course on statistical and thermal physics. It begins with a review of the formal structure of statistical mechanics and thermodynamics considered from a unified viewpoint. There is a brief revision of non-interacting systems, including quantum gases and a discussion of negative temperatures. Following this, emphasis is on interacting systems. First, weakly interacting systems are considered, where the interest is in seeing how small interactions cause small deviations from the non-interacting case. Second, systems are examined where interactions lead to drastic changes, namely phase transitions. A number of specific examples is given, and these are unified within the Landau theory of phase transitions. The final chapter of the book looks at non-equilibrium systems, in particular the way they evolve towards equilibrium. This is framed within the context of linear response theory. Here fluctuations play a vital role, as is formalised in the fluctuation-dissipation theorem.The second edition has been revised particularly to help students use this book for self-study. In addition, the section on non-ideal gases has been expanded, with a treatment of the hard-sphere gas, and an accessible discussion of interacting quantum gases. In many cases there are details of Mathematica calculations, including Mathematica Notebooks, and expression of some results in terms of Special Functions.
Download or read book Advances in Solid State Physics written by Bernhard Kramer and published by Springer. This book was released on 2007-10-29 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 2002 Spring Meeting of the "Deutsche Physikalische Gesellschaft" was held in Regensburg from March 25th to 29th, 2002. The number of conference attendees has remained remarkably stable at about 2800, despite the decreas ing number of German PhD students. This can be taken as an indication that the program of the meeting was very attractive. The present volume of the "Advances in Solid State Physics" contains the written versions of most of the invited talks, also those presented as part of the Symposia. Most of these Symposia were organized by several divisions in collaboration and they covered fascinating selection of topics of current interest. I trust that the book reflects this year's status of the field in Germany. In particular, one notes a slight change in paradigms: from quantum dots and wires to spin transport and soft matter systems in the broadest sense. This seems to reflect the present general trend in physics. Nevertheless, a large portion of the invited papers as well as the discussions at the meeting concentrated on nanostrnctured matter.
Download or read book Neural Computation in Hopfield Networks and Boltzmann Machines written by James P. Coughlin and published by University of Delaware Press. This book was released on 1995 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: "One hundred years ago, the fundamental building block of the central nervous system, the neuron, was discovered. This study focuses on the existing mathematical models of neurons and their interactions, the simulation of which has been one of the biggest challenges facing modern science." "More than fifty years ago, W. S. McCulloch and W. Pitts devised their model for the neuron, John von Neumann seemed to sense the possibilities for the development of intelligent systems, and Frank Rosenblatt came up with a functioning network of neurons. Despite these advances, the subject had begun to fade as a major research area until John Hopfield arrived on the scene. Drawing an analogy between neural networks and the Ising spin models of ferromagnetism, Hopfield was able to introduce a "computational energy" that would decline toward stable minima under the operation of the system of neurodynamics devised by Roy Glauber." "Like a switch, a neuron is said to be either "on" or "off." The state of the neuron is determined by the states of the other neurons and the connections between them, and the connections are assumed to be reciprocal - that is, neuron number one influences neuron number two exactly as strongly as neuron number two influences neuron number one. According to the Glauber dynamics, the states of the neurons are updated in a random serial way until an equilibrium is reached. An energy function can be associated with each state, and equilibrium corresponds to a minimum of this energy. It follows from Hopfield's assumption of reciprocity that an equilibrium will always be reached." "D. H. Ackley, G. E. Hinton, and T. J. Sejnowski modified the Hopfield network by introducing the simulated annealing algorithm to search out the deepest minima. This is accomplished by - loosely speaking - shaking the machine. The violence of the shaking is controlled by a parameter called temperature, producing the Boltzmann machine - a name designed to emphasize the connection to the statistical physics of Ising spin models." "The Boltzmann machine reduces to the Hopfield model in the special case where the temperature goes to zero. The resulting network, under the Glauber dynamics, produces a homogeneous, irreducible, aperiodic Markov chain as it wanders through state space. The entire theory of Markov chains becomes applicable to the Boltzmann machine." "With ten chapters, five appendices, a list of references, and an index, this study should serve as an introduction to the field of neural networks and its application, and is suitable for an introductory graduate course or an advanced undergraduate course."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved