EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Urban Hydroinformatics

    Book Details:
  • Author : Roland K. Price
  • Publisher : IWA Publishing
  • Release : 2011
  • ISBN : 1843392747
  • Pages : 553 pages

Download or read book Urban Hydroinformatics written by Roland K. Price and published by IWA Publishing. This book was released on 2011 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to hydroinformatics applied to urban water management. It shows how to make the best use of information and communication technologies for manipulating information to manage water in the urban environment. The book covers the acquisition and analysis of data from urban water systems to instantiate mathematical models or calculations, which describe identified physical processes. The models are operated within prescribed management procedures to inform decision makers, who are responsible to recognized stakeholders. The application is to the major components of the urban water environment, namely water supply, treatment and distribution, wastewater and stormwater collection, treatment and impact on receiving waters, and groundwater and urban flooding. Urban Hydroinformatics pays particular attention to modeling, decision support through procedures, economics and management, and implementation in both developed and developing countries. The book is written with post-graduates, researchers and practicing engineers who are involved in urban water management and want to improve the scope and reliability of their systems.

Book How to Fine tune Support Vector Machines for Classification

Download or read book How to Fine tune Support Vector Machines for Classification written by Ionuţ Bogdan Brânduşoiu and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Neural Networks and Statistical Learning

Download or read book Neural Networks and Statistical Learning written by Ke-Lin Du and published by Springer Science & Business Media. This book was released on 2013-12-09 with total page 834 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining.

Book Efficient Processing of Deep Neural Networks

Download or read book Efficient Processing of Deep Neural Networks written by Vivienne Sze and published by Springer Nature. This book was released on 2022-05-31 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.

Book The Roots of Backpropagation

Download or read book The Roots of Backpropagation written by Paul John Werbos and published by John Wiley & Sons. This book was released on 1994-03-31 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now, for the first time, publication of the landmark work inbackpropagation! Scientists, engineers, statisticians, operationsresearchers, and other investigators involved in neural networkshave long sought direct access to Paul Werbos's groundbreaking,much-cited 1974 Harvard doctoral thesis, The Roots ofBackpropagation, which laid the foundation of backpropagation. Now,with the publication of its full text, these practitioners can gostraight to the original material and gain a deeper, practicalunderstanding of this unique mathematical approach to socialstudies and related fields. In addition, Werbos has provided threemore recent research papers, which were inspired by his originalwork, and a new guide to the field. Originally written for readerswho lacked any knowledge of neural nets, The Roots ofBackpropagation firmly established both its historical andcontinuing significance as it: * Demonstrates the ongoing value and new potential ofbackpropagation * Creates a wealth of sound mathematical tools useful acrossdisciplines * Sets the stage for the emerging area of fast automaticdifferentiation * Describes new designs for forecasting and control which exploitbackpropagation * Unifies concepts from Freud, Jung, biologists, and others into anew mathematical picture of the human mind and how it works * Certifies the viability of Deutsch's model of nationalism as apredictive tool--as well as the utility of extensions of thiscentral paradigm "What a delight it was to see Paul Werbos rediscover Freud'sversion of 'back-propagation.' Freud was adamant (in The Projectfor a Scientific Psychology) that selective learning could onlytake place if the presynaptic neuron was as influenced as is thepostsynaptic neuron during excitation. Such activation of bothsides of the contact barrier (Freud's name for the synapse) wasaccomplished by reducing synaptic resistance by the absorption of'energy' at the synaptic membranes. Not bad for 1895! But Werbos1993 is even better." --Karl H. Pribram Professor Emeritus,Stanford University

Book Recommender Systems

    Book Details:
  • Author : Charu C. Aggarwal
  • Publisher : Springer
  • Release : 2016-03-28
  • ISBN : 3319296590
  • Pages : 518 pages

Download or read book Recommender Systems written by Charu C. Aggarwal and published by Springer. This book was released on 2016-03-28 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprehensively covers the topic of recommender systems, which provide personalized recommendations of products or services to users based on their previous searches or purchases. Recommender system methods have been adapted to diverse applications including query log mining, social networking, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. The chapters of this book are organized into three categories: Algorithms and evaluation: These chapters discuss the fundamental algorithms in recommender systems, including collaborative filtering methods, content-based methods, knowledge-based methods, ensemble-based methods, and evaluation. Recommendations in specific domains and contexts: the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored. Advanced topics and applications: Various robustness aspects of recommender systems, such as shilling systems, attack models, and their defenses are discussed. In addition, recent topics, such as learning to rank, multi-armed bandits, group systems, multi-criteria systems, and active learning systems, are introduced together with applications. Although this book primarily serves as a textbook, it will also appeal to industrial practitioners and researchers due to its focus on applications and references. Numerous examples and exercises have been provided, and a solution manual is available for instructors.

Book Hyperspectral Image Analysis

Download or read book Hyperspectral Image Analysis written by Saurabh Prasad and published by Springer Nature. This book was released on 2020-04-27 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.

Book Handbook of Neural Computation

Download or read book Handbook of Neural Computation written by E Fiesler and published by CRC Press. This book was released on 1996-01-01 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Neural Computation is a practical, hands-on guide to the design and implementation of neural networks used by scientists and engineers to tackle difficult and/or time-consuming problems. The handbook bridges an information pathway between scientists and engineers in different disciplines who apply neural networks to similar problems. It is unmatched in the breadth of its coverage and is certain to become the standard reference resource for the neural network community.

Book Explainable AI  Interpreting  Explaining and Visualizing Deep Learning

Download or read book Explainable AI Interpreting Explaining and Visualizing Deep Learning written by Wojciech Samek and published by Springer Nature. This book was released on 2019-09-10 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.

Book New Learning Paradigms in Soft Computing

Download or read book New Learning Paradigms in Soft Computing written by Lakhmi C. Jain and published by Physica. This book was released on 2013-06-05 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learning is a key issue in the analysis and design of all kinds of intelligent systems. In recent time many new paradigms of automated (machine) learning have been proposed in the literature. Soft computing, that has proved to be an effective and efficient tool in so many areas of science and technology, seems to offer new qualities in the realm of machine learning too. The purpose of this volume is to present some new learning paradigms that have been triggered, or at least strongly influenced by soft computing tools and techniques, mainly related to neural networks, fuzzy logic, rough sets, and evolutionary computations.

Book Nonlinear Regression Analysis and Its Applications

Download or read book Nonlinear Regression Analysis and Its Applications written by Douglas M. Bates and published by Wiley-Interscience. This book was released on 2007-04-23 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a presentation of the theoretical, practical, and computational aspects of nonlinear regression. There is background material on linear regression, including a geometrical development for linear and nonlinear least squares.

Book High Performance Training for Sports

Download or read book High Performance Training for Sports written by David Joyce and published by Human Kinetics. This book was released on 2014-06-09 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-Performance Training for Sports changes the landscape of athletic conditioning and sports performance. This groundbreaking work presents the latest and most effective philosophies, protocols and programmes for developing today’s athletes. High-Performance Training for Sports features contributions from global leaders in athletic performance training, coaching and rehabilitation. Experts share the cutting-edge knowledge and techniques they’ve used with Olympians as well as top athletes and teams from the NBA, NFL, MLB, English Premier League, Tour de France and International Rugby. Combining the latest science and research with proven training protocols, High-Performance Training for Sports will guide you in these areas: • Optimise the effectiveness of cross-training. • Translate strength into speed. • Increase aerobic capacity and generate anaerobic power. • Maintain peak conditioning throughout the season. • Minimise the interference effect. • Design energy-specific performance programmes. Whether you are working with high-performance athletes of all ages or with those recovering from injury, High-Performance Training for Sports is the definitive guide for developing all aspects of athletic performance. It is a must-own guide for any serious strength and conditioning coach, trainer, rehabilitator or athlete.

Book C   Neural Networks and Fuzzy Logic

Download or read book C Neural Networks and Fuzzy Logic written by Hayagriva V. Rao and published by . This book was released on 1996 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Meta Learning in Decision Tree Induction

Download or read book Meta Learning in Decision Tree Induction written by Krzysztof Grąbczewski and published by Springer. This book was released on 2013-09-11 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on different variants of decision tree induction but also describes the meta-learning approach in general which is applicable to other types of machine learning algorithms. The book discusses different variants of decision tree induction and represents a useful source of information to readers wishing to review some of the techniques used in decision tree learning, as well as different ensemble methods that involve decision trees. It is shown that the knowledge of different components used within decision tree learning needs to be systematized to enable the system to generate and evaluate different variants of machine learning algorithms with the aim of identifying the top-most performers or potentially the best one. A unified view of decision tree learning enables to emulate different decision tree algorithms simply by setting certain parameters. As meta-learning requires running many different processes with the aim of obtaining performance results, a detailed description of the experimental methodology and evaluation framework is provided. Meta-learning is discussed in great detail in the second half of the book. The exposition starts by presenting a comprehensive review of many meta-learning approaches explored in the past described in literature, including for instance approaches that provide a ranking of algorithms. The approach described can be related to other work that exploits planning whose aim is to construct data mining workflows. The book stimulates interchange of ideas between different, albeit related, approaches.

Book Machine Learning

Download or read book Machine Learning written by Andreas Lindholm and published by . This book was released on 2022 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book introduces machine learning for readers with some background in basic linear algebra, statistics, probability, and programming. In a coherent statistical framework it covers a selection of supervised machine learning methods, from the most fundamental (k-NN, decision trees, linear and logistic regression) to more advanced methods (deep neural networks, support vector machines, Gaussian processes, random forests and boosting), plus commonly-used unsupervised methods (generative modeling, k-means, PCA, autoencoders and generative adversarial networks). Careful explanations and pseudo-code are presented for all methods. The authors maintain a focus on the fundamentals by drawing connections between methods and discussing general concepts such as loss functions, maximum likelihood, the bias-variance decomposition, ensemble averaging, kernels and the Bayesian approach along with generally useful tools such as regularization, cross validation, evaluation metrics and optimization methods. The final chapters offer practical advice for solving real-world supervised machine learning problems and on ethical aspects of modern machine learning"--

Book Data Mining for Genomics and Proteomics

Download or read book Data Mining for Genomics and Proteomics written by Darius M. Dziuda and published by John Wiley & Sons. This book was released on 2010-07-16 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining for Genomics and Proteomics uses pragmatic examples and a complete case study to demonstrate step-by-step how biomedical studies can be used to maximize the chance of extracting new and useful biomedical knowledge from data. It is an excellent resource for students and professionals involved with gene or protein expression data in a variety of settings.

Book Advances in Neural Computation  Machine Learning  and Cognitive Research III

Download or read book Advances in Neural Computation Machine Learning and Cognitive Research III written by Boris Kryzhanovsky and published by Springer Nature. This book was released on 2019-09-03 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes new theories and applications of artificial neural networks, with a special focus on answering questions in neuroscience, biology and biophysics and cognitive research. It covers a wide range of methods and technologies, including deep neural networks, large scale neural models, brain computer interface, signal processing methods, as well as models of perception, studies on emotion recognition, self-organization and many more. The book includes both selected and invited papers presented at the XXI International Conference on Neuroinformatics, held on October 7-11, 2019, in Dolgoprudny, a town in Moscow region, Russia.