EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Semiconductor Device Modelling

Download or read book Semiconductor Device Modelling written by Christopher M. Snowden and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor device modelling has developed in recent years from being solely the domain of device physicists to span broader technological disciplines involved in device and electronic circuit design and develop ment. The rapid emergence of very high speed, high density integrated circuit technology and the drive towards high speed communications has meant that extremely small-scale device structures are used in contempor ary designs. The characterisation and analysis of these devices can no longer be satisfied by electrical measurements alone. Traditional equivalent circuit models and closed-form analytical models cannot always provide consis tently accurate results for all modes of operation of these very small devices. Furthermore, the highly competitive nature of the semiconductor industry has led to the need to minimise development costs and lead-time associated with introducing new designs. This has meant that there has been a greater demand for models capable of increasing our understanding of how these devices operate and capable of predicting accurate quantitative results. The desire to move towards computer aided design and expert systems has reinforced the need for models capable of representing device operation under DC, small-signal, large-signal and high frequency operation. It is also desirable to relate the physical structure of the device to the electrical performance. This demand for better models has led to the introduction of improved equivalent circuit models and a upsurge in interest in using physical models.

Book Semiconductor Devices

Download or read book Semiconductor Devices written by Kevin M. Kramer and published by Prentice Hall. This book was released on 1997 with total page 746 pages. Available in PDF, EPUB and Kindle. Book excerpt: CD-ROM contains: "Win32 version of SGFramework and the simulations contains in the book."

Book Introduction to Semiconductor Device Modelling

Download or read book Introduction to Semiconductor Device Modelling written by Christopher M. Snowden and published by World Scientific. This book was released on 1998 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals mainly with physical device models which are developed from the carrier transport physics and device geometry considerations. The text concentrates on silicon and gallium arsenide devices and includes models of silicon bipolar junction transistors, junction field effect transistors (JFETs), MESFETs, silicon and GaAs MESFETs, transferred electron devices, pn junction diodes and Schottky varactor diodes. The modelling techniques of more recent devices such as the heterojunction bipolar transistors (HBT) and the high electron mobility transistors are discussed. This book contains details of models for both equilibrium and non-equilibrium transport conditions. The modelling Technique of Small-scale devices is discussed and techniques applicable to submicron-dimensioned devices are included. A section on modern quantum transport analysis techniques is included. Details of essential numerical schemes are given and a variety of device models are used to illustrate the application of these techniques in various fields.

Book The Monte Carlo Method for Semiconductor Device Simulation

Download or read book The Monte Carlo Method for Semiconductor Device Simulation written by Carlo Jacoboni and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the application of the Monte Carlo method to the simulation of semiconductor devices, reviewing the physics of transport in semiconductors, followed by an introduction to the physics of semiconductor devices.

Book Monte Carlo Simulation of Semiconductor Devices

Download or read book Monte Carlo Simulation of Semiconductor Devices written by C. Moglestue and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Particle simulation of semiconductor devices is a rather new field which has started to catch the interest of the world's scientific community. It represents a time-continuous solution of Boltzmann's transport equation, or its quantum mechanical equivalent, and the field equation, without encountering the usual numerical problems associated with the direct solution. The technique is based on first physical principles by following in detail the transport histories of indi vidual particles and gives a profound insight into the physics of semiconductor devices. The method can be applied to devices of any geometrical complexity and material composition. It yields an accurate description of the device, which is not limited by the assumptions made behind the alternative drift diffusion and hydrodynamic models, which represent approximate solutions to the transport equation. While the development of the particle modelling technique has been hampered in the past by the cost of computer time, today this should not be held against using a method which gives a profound physical insight into individual devices and can be used to predict the properties of devices not yet manufactured. Employed in this way it can save the developer much time and large sums of money, both important considerations for the laboratory which wants to keep abreast of the field of device research. Applying it to al ready existing electronic components may lead to novel ideas for their improvement. The Monte Carlo particle simulation technique is applicable to microelectronic components of any arbitrary shape and complexity.

Book Semiconductor Device Modeling with Spice

Download or read book Semiconductor Device Modeling with Spice written by Giuseppe Massabrio and published by McGraw Hill Professional. This book was released on 1998-12-22 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.

Book SEMICONDUCTOR DEVICES

Download or read book SEMICONDUCTOR DEVICES written by NANDITA DASGUPTA and published by PHI Learning Pvt. Ltd.. This book was released on 2004-01-01 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed primarily at the undergraduate students pursuing courses in semiconductor physics and semiconductor devices, this text emphasizes the physical understanding of the underlying principles of the subject. Since engineers use semiconductor devices as circuit elements, device models commonly used in the circuit simulators, e.g. SPICE, have been discussed in detail. Advanced topics such as lasers, heterojunction bipolar transistors, second order effects in BJTs, and MOSFETs are also covered. With such in-depth coverage and a practical approach, practising engineers and PG students can also use this book as a ready reference.

Book Noise in Semiconductor Devices

Download or read book Noise in Semiconductor Devices written by Fabrizio Bonani and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an overview of the physical basis of noise in semiconductor devices, and a detailed treatment of numerical noise simulation in small-signal conditions. It presents innovative developments in the noise simulation of semiconductor devices operating in large-signal quasi-periodic conditions.

Book Compound Semiconductor Device Modelling

Download or read book Compound Semiconductor Device Modelling written by Christopher M. Snowden and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at microwave, millimetre and optical frequencies. The apparent complexity of equivalent circuit and physics-based models distinguishes high frequency devices from their low frequency counterparts . . Over the past twenty years a wide range of modelling techniques have emerged suitable for describing the operation of compound semiconductor devices. This book brings together for the first time the most popular techniques in everyday use by engineers and scientists. The book specifically addresses the requirements and techniques suitable for modelling GaAs, InP. ternary and quaternary semiconductor devices found in modern technology.

Book Semiconductor Device Modeling with SPICE

Download or read book Semiconductor Device Modeling with SPICE written by Giuseppe Massobrio and published by McGraw-Hill Professional Publishing. This book was released on 1993 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: How to stimulate circuits faster and better with SPICE. Table of Contents: PN-Junction Diode And Schottky Diode; Bipolar Junction Transistor (BJT); Junction Field-Effect Transistor (JFET); The MOS Transistor; BJT Parameter Measurements; MOS Parameter Measurements; Noise and Distortion; The SPICE Program; MESFET, ISFET, And Thyrstor Devices; Appendix A: The Two-Terminal PN Structure; Appendix B: The Two-Terminal MOS Structure; Appendix C: MS Junctions; Index. 100 illustrations.

Book Semiconductor Device Modelling

Download or read book Semiconductor Device Modelling written by Roel Baets and published by . This book was released on 1989-05-01 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modelling of Interface Carrier Transport for Device Simulation

Download or read book Modelling of Interface Carrier Transport for Device Simulation written by Dietmar Schroeder and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a comprehensive review of the physics, modelling and simulation of electron transport at interfaces in semiconductor devices. It combines a review of existing interface charge transport models with original developments, and introduces a unified representation of charge transport at semiconductor interfaces.

Book Semiconductor Device Physics and Simulation

Download or read book Semiconductor Device Physics and Simulation written by J.S. Yuan and published by Springer Science & Business Media. This book was released on 2013-11-22 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of the microelectronics technology has made ever-increasing numbers of small devices on a same chip. The rapid emergence of ultra-large-scaled-integrated (ULSI) technology has moved device dimension into the sub-quarter-micron regime and put more than 10 million transistors on a single chip. While traditional closed-form analytical models furnish useful intuition into how semiconductor devices behave, they no longer provide consistently accurate results for all modes of operation of these very small devices. The reason is that, in such devices, various physical mechanisms affect the device performance in a complex manner, and the conventional assumptions (i. e. , one-dimensional treatment, low-level injection, quasi-static approximation, etc. ) em ployed in developing analytical models become questionable. Thus, the use of numerical device simulation becomes important in device modeling. Researchers and engineers will rely even more on device simulation for device design and analysis in the future. This book provides comprehensive coverage of device simulation and analysis for various modem semiconductor devices. It will serve as a reference for researchers, engineers, and students who require in-depth, up-to-date information and understanding of semiconductor device physics and characteristics. The materials of the book are limited to conventional and mainstream semiconductor devices; photonic devices such as light emitting and laser diodes are not included, nor does the book cover device modeling, device fabrication, and circuit applications.

Book Semiconductor Device Modeling With SPICE

Download or read book Semiconductor Device Modeling With SPICE written by and published by Tata McGraw-Hill Education. This book was released on with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Theory of Semiconductor Quantum Devices

Download or read book Theory of Semiconductor Quantum Devices written by Fausto Rossi and published by Springer Science & Business Media. This book was released on 2011-01-13 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Primary goal of this book is to provide a cohesive description of the vast field of semiconductor quantum devices, with special emphasis on basic quantum-mechanical phenomena governing the electro-optical response of new-generation nanomaterials. The book will cover within a common language different types of optoelectronic nanodevices, including quantum-cascade laser sources and detectors, few-electron/exciton quantum devices, and semiconductor-based quantum logic gates. The distinguishing feature of the present volume is a unified microscopic treatment of quantum-transport and coherent-optics phenomena on ultrasmall space- and time-scales, as well as of their semiclassical counterparts.

Book Advanced Physical Models for Silicon Device Simulation

Download or read book Advanced Physical Models for Silicon Device Simulation written by Andreas Schenk and published by Springer Science & Business Media. This book was released on 1998-07-07 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "... this is a well produced book, written in a easy to read style, and will also be a very useful primer for someone starting out the field [...], and a useful source of reference for experienced users ..." Microelectronics Journal

Book Semiconductor Devices Explained

Download or read book Semiconductor Devices Explained written by Ton J. Mouthaan and published by John Wiley & Sons. This book was released on 1999 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers an innovative and accessible new approach to the teaching of the fundamentals of semiconductor components by exploiting simulation to explain the mechanisms behind current in semiconductor structures. Simulation is a popular tool used by engineers and scientists in device and process research and the accompanying two dimensional process and device simulation software 'MicroTec', enables students to make their own devices and allows the recreation of real performance under varying parameters. There is also an accompanying ftp site containing ICECREAM software (Integrated Circuits and Electronics group Computerized Remedial Education And Mastering) which improves understanding of the physics involved and covers semiconductor physics, junction diodes, silicon bipolar and MOS transistors and photonic devices like LEDs and lasers. Features include: * MicroTec diskette containing a two-dimensional process and device simulator on which the many simulation exercises mentioned in the text can be performed thereby facilitating learning through experimentation * Computer aided education software (accessible vita ftp) featuring question and answer games, which enables students to enhance their understanding of the physics involved and allows lecturers to set assignments * Broad coverage spanning the common devices: pn junctions, metal semiconductor junctions, photocells, lasers, bipolar transistors, and MOS transistors * Discussion of fundamental concepts and technological principles offering the student a valuable grounding in semiconductor physics * Examination of the implications of recent research on small dimensions, reliability problems and breakdown mechanisms. Semiconductor Devices Explained offers a comprehensive new approach to teaching the fundamentals of semiconductor components based on the use of the accompanying process and device simulation software. Simulation is a popular tool used by engineers and scientists in device and process research. It supports the understanding of basic phenomena by linking the theory to hands on applications and real world problems with semiconductor devices. Throughout the text students are encouraged to augment their understanding by undertaking simulations and creating their own devices. The ICECREAM programme (Integrated Circuits and Electronics group Computerized Remedial Education And Mastering) question and answer game leads students through the concepts of common devices and makes learning fun. There is also a self-test element in which a data bank generates questions on the fundamentals of semiconductor junctions enabling students to assess their progress. Larger projects suitable for use as examination assignments are also incorporated. The test package is freely available to lecturers from the author on request. The remedial component of ICECREAM is available from the Wiley ftp site. MicroTec comes on a disk in the back of the book.