Download or read book Social Media Mining and Social Network Analysis Emerging Research written by Xu, Guandong and published by IGI Global. This book was released on 2013-01-31 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Social Media Mining and Social Network Analysis: Emerging Research highlights the advancements made in social network analysis and social web mining and its influence in the fields of computer science, information systems, sociology, organization science discipline and much more. This collection of perspectives on developmental practice is useful for industrial practitioners as well as researchers and scholars.
Download or read book Data Mining in Dynamic Social Networks and Fuzzy Systems written by Bhatnagar, Vishal and published by IGI Global. This book was released on 2013-06-30 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many organizations, whether in the public or private sector, have begun to take advantage of the tools and techniques used for data mining. Utilizing data mining tools, these organizations are able to reveal the hidden and unknown information from available data. Data Mining in Dynamic Social Networks and Fuzzy Systems brings together research on the latest trends and patterns of data mining tools and techniques in dynamic social networks and fuzzy systems. With these improved modern techniques of data mining, this publication aims to provide insight and support to researchers and professionals concerned with the management of expertise, knowledge, information, and organizational development.
Download or read book Sentiment Analysis in Social Networks written by Federico Alberto Pozzi and published by Morgan Kaufmann. This book was released on 2016-10-06 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of Sentiment Analysis is to define automatic tools able to extract subjective information from texts in natural language, such as opinions and sentiments, in order to create structured and actionable knowledge to be used by either a decision support system or a decision maker. Sentiment analysis has gained even more value with the advent and growth of social networking. Sentiment Analysis in Social Networks begins with an overview of the latest research trends in the field. It then discusses the sociological and psychological processes underling social network interactions. The book explores both semantic and machine learning models and methods that address context-dependent and dynamic text in online social networks, showing how social network streams pose numerous challenges due to their large-scale, short, noisy, context- dependent and dynamic nature. Further, this volume: - Takes an interdisciplinary approach from a number of computing domains, including natural language processing, machine learning, big data, and statistical methodologies - Provides insights into opinion spamming, reasoning, and social network analysis - Shows how to apply sentiment analysis tools for a particular application and domain, and how to get the best results for understanding the consequences - Serves as a one-stop reference for the state-of-the-art in social media analytics - Takes an interdisciplinary approach from a number of computing domains, including natural language processing, big data, and statistical methodologies - Provides insights into opinion spamming, reasoning, and social network mining - Shows how to apply opinion mining tools for a particular application and domain, and how to get the best results for understanding the consequences - Serves as a one-stop reference for the state-of-the-art in social media analytics
Download or read book Social Networks and the Semantic Web written by Peter Mika and published by Springer Science & Business Media. This book was released on 2007-10-23 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Social Networks and the Semantic Web offers valuable information to practitioners developing social-semantic software for the Web. It provides two major case studies. The first case study shows the possibilities of tracking a research community over the Web. It reveals how social network mining from the web plays an important role for obtaining large scale, dynamic network data beyond the possibilities of survey methods. The second case study highlights the role of the social context in user-generated classifications in content, such as the tagging systems known as folksonomies.
Download or read book Social Network Data Analytics written by Charu C. Aggarwal and published by Springer Science & Business Media. This book was released on 2011-03-18 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Social network analysis applications have experienced tremendous advances within the last few years due in part to increasing trends towards users interacting with each other on the internet. Social networks are organized as graphs, and the data on social networks takes on the form of massive streams, which are mined for a variety of purposes. Social Network Data Analytics covers an important niche in the social network analytics field. This edited volume, contributed by prominent researchers in this field, presents a wide selection of topics on social network data mining such as Structural Properties of Social Networks, Algorithms for Structural Discovery of Social Networks and Content Analysis in Social Networks. This book is also unique in focussing on the data analytical aspects of social networks in the internet scenario, rather than the traditional sociology-driven emphasis prevalent in the existing books, which do not focus on the unique data-intensive characteristics of online social networks. Emphasis is placed on simplifying the content so that students and practitioners benefit from this book. This book targets advanced level students and researchers concentrating on computer science as a secondary text or reference book. Data mining, database, information security, electronic commerce and machine learning professionals will find this book a valuable asset, as well as primary associations such as ACM, IEEE and Management Science.
Download or read book Handbook of Social Network Technologies and Applications written by Borko Furht and published by Springer Science & Business Media. This book was released on 2010-11-04 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: Social networking is a concept that has existed for a long time; however, with the explosion of the Internet, social networking has become a tool for people to connect and communicate in ways that were impossible in the past. The recent development of Web 2.0 has provided many new applications, such as Myspace, Facebook, and LinkedIn. The purpose of Handbook of Social Network Technologies and Applications is to provide comprehensive guidelines on the current and future trends in social network technologies and applications in the field of Web-based Social Networks. This handbook includes contributions from world experts in the field of social networks from both academia and private industry. A number of crucial topics are covered including Web and software technologies and communication technologies for social networks. Web-mining techniques, visualization techniques, intelligent social networks, Semantic Web, and many other topics are covered. Standards for social networks, case studies, and a variety of applications are covered as well.
Download or read book Web Mining and Social Networking written by Guandong Xu and published by Springer Science & Business Media. This book was released on 2010-10-20 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the techniques and applications involved in the Web Mining, Web Personalization and Recommendation and Web Community Analysis domains, including a detailed presentation of the principles, developed algorithms, and systems of the research in these areas. The applications of web mining, and the issue of how to incorporate web mining into web personalization and recommendation systems are also reviewed. Additionally, the volume explores web community mining and analysis to find the structural, organizational and temporal developments of web communities and reveal the societal sense of individuals or communities. The volume will benefit both academic and industry communities interested in the techniques and applications of web search, web data management, web mining and web knowledge discovery, as well as web community and social network analysis.
Download or read book Cognitive Social Mining Applications in Data Analytics and Forensics written by Haldorai, Anandakumar and published by IGI Global. This book was released on 2018-12-14 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, there has been a rapid increase in interest regarding social network analysis in the data mining community. Cognitive radios are expected to play a major role in meeting this exploding traffic demand on social networks due to their ability to sense the environment, analyze outdoor parameters, and then make decisions for dynamic time, frequency, space, resource allocation, and management to improve the utilization of mining the social data. Cognitive Social Mining Applications in Data Analytics and Forensics is an essential reference source that reviews cognitive radio concepts and examines their applications to social mining using a machine learning approach so that an adaptive and intelligent mining is achieved. Featuring research on topics such as data mining, real-time ubiquitous social mining services, and cognitive computing, this book is ideally designed for social network analysts, researchers, academicians, and industry professionals.
Download or read book Information Retrieval and Social Media Mining written by María N. Moreno García and published by MDPI. This book was released on 2021-03-09 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents diverse contributions related to some of the latest advances in the field of personalization and recommender systems, as well as social media and sentiment analysis. The work comprises several articles that address different problems in these areas by means of recent techniques such as deep learning, methods to analyze the structure and the dynamics of social networks, and modern language processing approaches for sentiment analysis, among others. The proposals included in the book are representative of some highly topical research directions and cover different application domains where they have been validated. These go from the recommendation of hotels, movies, music, documents, or pharmacy cross-selling to sentiment analysis in the field of telemedicine and opinion mining on news, also including the study of social capital on social media and dynamics aspects of the Twitter social network.
Download or read book Encyclopedia of Social Network Analysis and Mining written by Reda Alhajj and published by Springer. This book was released on 2018-05-02 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Encyclopedia of Social Network Analysis and Mining (ESNAM) is the first major reference work to integrate fundamental concepts and research directions in the areas of social networks and applications to data mining. The second edition of ESNAM is a truly outstanding reference appealing to researchers, practitioners, instructors and students (both undergraduate and graduate), as well as the general public. This updated reference integrates all basics concepts and research efforts under one umbrella. Coverage has been expanded to include new emerging topics such as crowdsourcing, opinion mining, and sentiment analysis. Revised content of existing material keeps the encyclopedia current. The second edition is intended for college students as well as public and academic libraries. It is anticipated to continue to stimulate more awareness of social network applications and research efforts. The advent of electronic communication, and in particular on-line communities, have created social networks of hitherto unimaginable sizes. Reflecting the interdisciplinary nature of this unique field, the essential contributions of diverse disciplines, from computer science, mathematics, and statistics to sociology and behavioral science, are described among the 300 authoritative yet highly readable entries. Students will find a world of information and insight behind the familiar façade of the social networks in which they participate. Researchers and practitioners will benefit from a comprehensive perspective on the methodologies for analysis of constructed networks, and the data mining and machine learning techniques that have proved attractive for sophisticated knowledge discovery in complex applications. Also addressed is the application of social network methodologies to other domains, such as web networks and biological networks.
Download or read book Mining the Social Web written by Matthew Russell and published by "O'Reilly Media, Inc.". This book was released on 2011-01-21 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Facebook, Twitter, and LinkedIn generate a tremendous amount of valuable social data, but how can you find out who's making connections with social media, what they’re talking about, or where they’re located? This concise and practical book shows you how to answer these questions and more. You'll learn how to combine social web data, analysis techniques, and visualization to help you find what you've been looking for in the social haystack, as well as useful information you didn't know existed. Each standalone chapter introduces techniques for mining data in different areas of the social Web, including blogs and email. All you need to get started is a programming background and a willingness to learn basic Python tools. Get a straightforward synopsis of the social web landscape Use adaptable scripts on GitHub to harvest data from social network APIs such as Twitter, Facebook, and LinkedIn Learn how to employ easy-to-use Python tools to slice and dice the data you collect Explore social connections in microformats with the XHTML Friends Network Apply advanced mining techniques such as TF-IDF, cosine similarity, collocation analysis, document summarization, and clique detection Build interactive visualizations with web technologies based upon HTML5 and JavaScript toolkits "Let Matthew Russell serve as your guide to working with social data sets old (email, blogs) and new (Twitter, LinkedIn, Facebook). Mining the Social Web is a natural successor to Programming Collective Intelligence: a practical, hands-on approach to hacking on data from the social Web with Python." --Jeff Hammerbacher, Chief Scientist, Cloudera "A rich, compact, useful, practical introduction to a galaxy of tools, techniques, and theories for exploring structured and unstructured data." --Alex Martelli, Senior Staff Engineer, Google
Download or read book Semantic Mining of Social Networks written by Jie Tang and published by Springer Nature. This book was released on 2022-06-01 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Online social networks have already become a bridge connecting our physical daily life with the (web-based) information space. This connection produces a huge volume of data, not only about the information itself, but also about user behavior. The ubiquity of the social Web and the wealth of social data offer us unprecedented opportunities for studying the interaction patterns among users so as to understand the dynamic mechanisms underlying different networks, something that was previously difficult to explore due to the lack of available data. In this book, we present the architecture of the research for social network mining, from a microscopic point of view. We focus on investigating several key issues in social networks. Specifically, we begin with analytics of social interactions between users. The first kinds of questions we try to answer are: What are the fundamental factors that form the different categories of social ties? How have reciprocal relationships been developed from parasocial relationships? How do connected users further form groups? Another theme addressed in this book is the study of social influence. Social influence occurs when one's opinions, emotions, or behaviors are affected by others, intentionally or unintentionally. Considerable research has been conducted to verify the existence of social influence in various networks. However, few literature studies address how to quantify the strength of influence between users from different aspects. In Chapter 4 and in [138], we have studied how to model and predict user behaviors. One fundamental problem is distinguishing the effects of different social factors such as social influence, homophily, and individual's characteristics. We introduce a probabilistic model to address this problem. Finally, we use an academic social network, ArnetMiner, as an example to demonstrate how we apply the introduced technologies for mining real social networks. In this system, we try to mine knowledge from both the informative (publication) network and the social (collaboration) network, and to understand the interaction mechanisms between the two networks. The system has been in operation since 2006 and has already attracted millions of users from more than 220 countries/regions.
Download or read book Mastering Social Media Mining with Python written by Marco Bonzanini and published by Packt Publishing Ltd. This book was released on 2016-07-29 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Acquire and analyze data from all corners of the social web with Python About This Book Make sense of highly unstructured social media data with the help of the insightful use cases provided in this guide Use this easy-to-follow, step-by-step guide to apply analytics to complicated and messy social data This is your one-stop solution to fetching, storing, analyzing, and visualizing social media data Who This Book Is For This book is for intermediate Python developers who want to engage with the use of public APIs to collect data from social media platforms and perform statistical analysis in order to produce useful insights from data. The book assumes a basic understanding of the Python Standard Library and provides practical examples to guide you toward the creation of your data analysis project based on social data. What You Will Learn Interact with a social media platform via their public API with Python Store social data in a convenient format for data analysis Slice and dice social data using Python tools for data science Apply text analytics techniques to understand what people are talking about on social media Apply advanced statistical and analytical techniques to produce useful insights from data Build beautiful visualizations with web technologies to explore data and present data products In Detail Your social media is filled with a wealth of hidden data – unlock it with the power of Python. Transform your understanding of your clients and customers when you use Python to solve the problems of understanding consumer behavior and turning raw data into actionable customer insights. This book will help you acquire and analyze data from leading social media sites. It will show you how to employ scientific Python tools to mine popular social websites such as Facebook, Twitter, Quora, and more. Explore the Python libraries used for social media mining, and get the tips, tricks, and insider insight you need to make the most of them. Discover how to develop data mining tools that use a social media API, and how to create your own data analysis projects using Python for clear insight from your social data. Style and approach This practical, hands-on guide will help you learn everything you need to perform data mining for social media. Throughout the book, we take an example-oriented approach to use Python for data analysis and provide useful tips and tricks that you can use in day-to-day tasks.
Download or read book Handbook of Research on Methods and Techniques for Studying Virtual Communities Paradigms and Phenomena written by Daniel, Ben Kei and published by IGI Global. This book was released on 2010-11-30 with total page 912 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book satisfies the need for methodological consideration and tools for data collection, analysis and presentation in virtual communities, covering studies on various types of virtual communities, making this reference a comprehensive source of research for those in the social sciences and humanities"--Provided by publisher.
Download or read book Social Network Analysis for Startups written by Maksim Tsvetovat and published by "O'Reilly Media, Inc.". This book was released on 2011-10-06 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Does your startup rely on social network analysis? This concise guide provides a statistical framework to help you identify social processes hidden among the tons of data now available. Social network analysis (SNA) is a discipline that predates Facebook and Twitter by 30 years. Through expert SNA researchers, you'll learn concepts and techniques for recognizing patterns in social media, political groups, companies, cultural trends, and interpersonal networks. You'll also learn how to use Python and other open source tools—such as NetworkX, NumPy, and Matplotlib—to gather, analyze, and visualize social data. This book is the perfect marriage between social network theory and practice, and a valuable source of insight and ideas. Discover how internal social networks affect a company’s ability to perform Follow terrorists and revolutionaries through the 1998 Khobar Towers bombing, the 9/11 attacks, and the Egyptian uprising Learn how a single special-interest group can control the outcome of a national election Examine relationships between companies through investment networks and shared boards of directors Delve into the anatomy of cultural fads and trends—offline phenomena often mediated by Twitter and Facebook
Download or read book Mining Text Data written by Charu C. Aggarwal and published by Springer Science & Business Media. This book was released on 2012-02-03 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.
Download or read book Graph Theoretic Approaches for Analyzing Large Scale Social Networks written by Meghanathan, Natarajan and published by IGI Global. This book was released on 2017-07-13 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Social network analysis has created novel opportunities within the field of data science. The complexity of these networks requires new techniques to optimize the extraction of useful information. Graph Theoretic Approaches for Analyzing Large-Scale Social Networks is a pivotal reference source for the latest academic research on emerging algorithms and methods for the analysis of social networks. Highlighting a range of pertinent topics such as influence maximization, probabilistic exploration, and distributed memory, this book is ideally designed for academics, graduate students, professionals, and practitioners actively involved in the field of data science.