EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Robust Hybrid Control for Autonomous Vehicle Motion Planning

Download or read book Robust Hybrid Control for Autonomous Vehicle Motion Planning written by Emilio Frazzoli and published by . This book was released on 2001 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: (Cont.) In the second part of the dissertation, a randomized algorithm is proposed for real-time motion planning in a dynamic environment. By employing the optimal control solution in a free space developed for the maneuver automaton (or for any other general system), we present a motion planning algorithm with probabilistic convergence and performance guarantees, and hard safety guarantees, even in the face of finite computation times. The proposed methodologies are applicable to a very large class of autonomous vehicles: throughout the dissertation, examples, simulation and experimental results are presented and discussed, involving a variety of mechanical systems, ranging from simple academic examples and laboratory setups, to detailed models of small autonomous helicopters.

Book Autonomous Road Vehicle Path Planning and Tracking Control

Download or read book Autonomous Road Vehicle Path Planning and Tracking Control written by Levent Guvenc and published by John Wiley & Sons. This book was released on 2021-12-06 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the latest research in path planning and robust path tracking control In Autonomous Road Vehicle Path Planning and Tracking Control, a team of distinguished researchers delivers a practical and insightful exploration of how to design robust path tracking control. The authors include easy to understand concepts that are immediately applicable to the work of practicing control engineers and graduate students working in autonomous driving applications. Controller parameters are presented graphically, and regions of guaranteed performance are simple to visualize and understand. The book discusses the limits of performance, as well as hardware-in-the-loop simulation and experimental results that are implementable in real-time. Concepts of collision and avoidance are explained within the same framework and a strong focus on the robustness of the introduced tracking controllers is maintained throughout. In addition to a continuous treatment of complex planning and control in one relevant application, the Autonomous Road Vehicle Path Planning and Tracking Control includes: A thorough introduction to path planning and robust path tracking control for autonomous road vehicles, as well as a literature review with key papers and recent developments in the area Comprehensive explorations of vehicle, path, and path tracking models, model-in-the-loop simulation models, and hardware-in-the-loop models Practical discussions of path generation and path modeling available in current literature In-depth examinations of collision free path planning and collision avoidance Perfect for advanced undergraduate and graduate students with an interest in autonomous vehicles, Autonomous Road Vehicle Path Planning and Tracking Control is also an indispensable reference for practicing engineers working in autonomous driving technologies and the mobility groups and sections of automotive OEMs.

Book Path Planning for Autonomous Vehicle

Download or read book Path Planning for Autonomous Vehicle written by Umar Zakir Abdul Hamid and published by BoD – Books on Demand. This book was released on 2019-10-02 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Path Planning (PP) is one of the prerequisites in ensuring safe navigation and manoeuvrability control for driverless vehicles. Due to the dynamic nature of the real world, PP needs to address changing environments and how autonomous vehicles respond to them. This book explores PP in the context of road vehicles, robots, off-road scenarios, multi-robot motion, and unmanned aerial vehicles (UAVs ).

Book Passivity Based Model Predictive Control for Mobile Vehicle Motion Planning

Download or read book Passivity Based Model Predictive Control for Mobile Vehicle Motion Planning written by Adnan Tahirovic and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt: Passivity-based Model Predictive Control for Mobile Vehicle Navigation represents a complete theoretical approach to the adoption of passivity-based model predictive control (MPC) for autonomous vehicle navigation in both indoor and outdoor environments. The brief also introduces analysis of the worst-case scenario that might occur during the task execution. Some of the questions answered in the text include: • how to use an MPC optimization framework for the mobile vehicle navigation approach; • how to guarantee safe task completion even in complex environments including obstacle avoidance and sideslip and rollover avoidance; and • what to expect in the worst-case scenario in which the roughness of the terrain leads the algorithm to generate the longest possible path to the goal. The passivity-based MPC approach provides a framework in which a wide range of complex vehicles can be accommodated to obtain a safer and more realizable tool during the path-planning stage. During task execution, the optimization step is continuously repeated to take into account new local sensor measurements. These ongoing changes make the path generated rather robust in comparison with techniques that fix the entire path prior to task execution. In addition to researchers working in MPC, engineers interested in vehicle path planning for a number of purposes: rescued mission in hazardous environments; humanitarian demining; agriculture; and even planetary exploration, will find this SpringerBrief to be instructive and helpful.

Book Path Planning and Robust Control of Autonomous Vehicles

Download or read book Path Planning and Robust Control of Autonomous Vehicles written by Sheng Zhu (Mechanical engineer) and published by . This book was released on 2020 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Autonomous driving is gaining popularity in research interest and industry investment over the last decade, due to its potential to increase driving safety to avoid driver errors which account for over 90% of all motor vehicle crashes. It could also help to improve public mobility especially for the disabled, and to boost the productivity due to enlarged traffic capacity and accelerated traffic flows. The path planning and following control, as the two essential modules for autonomous driving, still face critical challenges in implementations in a dynamically changing driving environment. For the local path/trajectory planning, multifold requirements need to be satisfied including reactivity to avoid collision with other objects, smooth curvature variation for passenger comfort, feasibility in terms of vehicle control, and the computation efficiency for real-time implementations. The feedback control is required afterward to accurately follow the planned path or trajectory by deciding appropriate actuator inputs, and favors smooth control variations to avoid sudden jerks. The control may also subject to instability or performance deterioration due to continuously changing operating conditions along with the model uncertainties. The dissertation contributes by raising the framework of path planning and control to address these challenges. Local on-road path planning methods from two-dimensional (2D) geometric path to the model-based state trajectory is explored. The latter one is emphasized due to its advantages in considering the vehicle model, state and control constraints to ensure dynamic feasibility. The real-time simulation is made possible with the adoption of control parameterization and lookup tables to reduce computation cost, with scenarios showing its smooth planning and the reactivity in collision avoidance with other traffic agents. The dissertation also explores both robust gain-scheduling law and model predictive control (MPC) for path following. The parameter-space approach is introduced in the former with validated robust performance under the uncertainty of vehicle load, speed and tire saturation parameter through hardware-in-the-loop and vehicle experiments. The focus is also put on improving the safety of the intended functionality (SOTIF) to account for the potential risks caused by lack of situational awareness in the absence of a system failure. Such safety hazards include the functional inability to comprehend the situation and the insufficient robustness to diverse conditions. The dissertation enhanced the SOTIF with parameter estimation through sensor fusion to increase the vehicle situational awareness of its internal and external conditions, such as the road friction coefficient. The estimated road friction coefficient helps in planning a dynamically feasible trajectory under adverse road condition. The integration of vehicle stability control with autonomous driving functions is also explored in the case that the road friction coefficient estimation is not responsive due to insufficiency in time and excitations.

Book Robust Motion Planning for Autonomous Tracked Vehicles in Deformable Terrain

Download or read book Robust Motion Planning for Autonomous Tracked Vehicles in Deformable Terrain written by Sang Uk Lee (S.M.) and published by . This book was released on 2016 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ensuring the safety of autonomous vehicles during operation is a challenging task. Numerous factors such as process noise, sensor noise, incorrect model etc. can yield uncertainty in robot's state. Especially for tracked vehicles operating on rough terrain, vehicle slip due to vehicle terrain interaction affects the vehicle system significantly. In such cases, the motion planning of the autonomous vehicle must be performed robustly, considering the uncertain factors in advance of the real-time navigation. The primary contribution of this thesis is to present a robust optimal global planner for autonomous tracked vehicles operating in off-road terrain with uncertain slip. In order to achieve this goal, three tasks must be completed. First, the motion planner must be able to work efficiently under the non-holonomic vehicle system model. An approximate method is applied to the tracked vehicle system ensuring both optimality and efficiency. Second, the motion planner should ensure robustness. For this, a robust incremental sampling based motion planning algorithm (CC-RRT*) is combined with the LQG-MP algorithm. CC-RRT* yields the optimal and probabilistically feasible trajectory by using a chance constrained approach under the RRT* framework. LQG-MP provides the capability of considering the role of compensator in the motion planning phase and bounds the degree of uncertainty to appropriate size. Third, the effect of slip on the vehicle system must be modeled properly. This can be done in advance of operation if we have experimental data and full information about the environment. However, in case where such knowledge is not available, the online slip estimation can be performed using system identification method such as the IPEM algorithm. Simulation results shows that the resulting algorithms are efficient, optimal, and robust. The simulation was performed on a realistic scenario with several important factors that can increase the uncertainty of the vehicle. Experimental results are also provided to support the validity of the proposed algorithm. The proposed framework can be applied to other robotic systems where robustness is an important issue.

Book Advanced UAV Aerodynamics  Flight Stability and Control

Download or read book Advanced UAV Aerodynamics Flight Stability and Control written by Pascual Marqués and published by John Wiley & Sons. This book was released on 2017-04-27 with total page 1180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensively covers emerging aerospace technologies Advanced UAV aerodynamics, flight stability and control: Novel concepts, theory and applications presents emerging aerospace technologies in the rapidly growing field of unmanned aircraft engineering. Leading scientists, researchers and inventors describe the findings and innovations accomplished in current research programs and industry applications throughout the world. Topics included cover a wide range of new aerodynamics concepts and their applications for real world fixed-wing (airplanes), rotary wing (helicopter) and quad-rotor aircraft. The book begins with two introductory chapters that address fundamental principles of aerodynamics and flight stability and form a knowledge base for the student of Aerospace Engineering. The book then covers aerodynamics of fixed wing, rotary wing and hybrid unmanned aircraft, before introducing aspects of aircraft flight stability and control. Key features: Sound technical level and inclusion of high-quality experimental and numerical data. Direct application of the aerodynamic technologies and flight stability and control principles described in the book in the development of real-world novel unmanned aircraft concepts. Written by world-class academics, engineers, researchers and inventors from prestigious institutions and industry. The book provides up-to-date information in the field of Aerospace Engineering for university students and lecturers, aerodynamics researchers, aerospace engineers, aircraft designers and manufacturers.

Book Lighter than Air Robots

Download or read book Lighter than Air Robots written by Yasmina Bestaoui Sebbane and published by Springer Science & Business Media. This book was released on 2011-11-15 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: An aerial robot is a system capable of sustained flight with no direct human control and able to perform a specific task. A lighter than air robot is an aerial robot that relies on the static lift to balance its own weight. It can also be defined as a lighter than air unmanned aerial vehicle or an unmanned airship with sufficient autonomy. Lighter than air systems are particularly appealing since the energy to keep them airborne is small. They are increasingly considered for various tasks such as monitoring, surveillance, advertising, freight carrier, transportation. This book familiarizes readers with a hierarchical decoupled planning and control strategy that has been proven efficient through research. It is made up of a hierarchy of modules with well defined functions operating at a variety of rates, linked together from top to bottom. The outer loop, closed periodically, consists of a discrete search that produces a set of waypoints leading to the goal while avoiding obstacles and weighed regions. The second level smoothes this set so that the generated paths are feasible given the vehicle's velocity and accelerations limits. The third level generates flyable, timed trajectories and the last one is the tracking controller that attempts to minimize the error between the robot measured trajectory and the reference trajectory. This hierarchy is reflected in the structure and content of the book. Topics treated are: Modelling, Flight Planning, Trajectory Design and Control. Finally, some actual projects are described in the appendix. This volume will prove useful for researchers and practitioners working in Robotics and Automation, Aerospace Technology, Control and Artificial Intelligence.

Book Planning Algorithms

    Book Details:
  • Author : Steven M. LaValle
  • Publisher : Cambridge University Press
  • Release : 2006-05-29
  • ISBN : 1139455176
  • Pages : 1029 pages

Download or read book Planning Algorithms written by Steven M. LaValle and published by Cambridge University Press. This book was released on 2006-05-29 with total page 1029 pages. Available in PDF, EPUB and Kindle. Book excerpt: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning, but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the 'configuration spaces' of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. This text and reference is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

Book Intelligent Autonomous Systems 13

Download or read book Intelligent Autonomous Systems 13 written by Emanuele Menegatti and published by Springer. This book was released on 2015-09-03 with total page 1669 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the latest research accomplishments, innovations, and visions in the field of robotics as presented at the 13th International Conference on Intelligent Autonomous Systems (IAS), held in Padua in July 2014, by leading researchers, engineers, and practitioners from across the world. The contents amply confirm that robots, machines, and systems are rapidly achieving intelligence and autonomy, mastering more and more capabilities such as mobility and manipulation, sensing and perception, reasoning, and decision making. A wide range of research results and applications are covered, and particular attention is paid to the emerging role of autonomous robots and intelligent systems in industrial production, which reflects their maturity and robustness. The contributions have been selected through a rigorous peer-review process and contain many exciting and visionary ideas that will further galvanize the research community, spurring novel research directions. The series of biennial IAS conferences commenced in 1986 and represents a premiere event in robotics.

Book NASA Formal Methods

    Book Details:
  • Author : Alwyn Goodloe
  • Publisher : Springer Science & Business Media
  • Release : 2012-03-27
  • ISBN : 3642288901
  • Pages : 477 pages

Download or read book NASA Formal Methods written by Alwyn Goodloe and published by Springer Science & Business Media. This book was released on 2012-03-27 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Fourth International Symposium on NASA Formal Methods, NFM 2012, held in Norfolk, VA, USA, in April 2012. The 36 revised regular papers presented together with 10 short papers, 3 invited talks were carefully reviewed and selected from 93 submissions. The topics are organized in topical sections on theorem proving, symbolic execution, model-based engineering, real-time and stochastic systems, model checking, abstraction and abstraction refinement, compositional verification techniques, static and dynamic analysis techniques, fault protection, cyber security, specification formalisms, requirements analysis and applications of formal techniques.

Book Robust Hybrid Control Systems

    Book Details:
  • Author : Ricardo G. Sanfelice
  • Publisher : ProQuest
  • Release : 2007
  • ISBN : 9780549268574
  • Pages : 710 pages

Download or read book Robust Hybrid Control Systems written by Ricardo G. Sanfelice and published by ProQuest. This book was released on 2007 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contributions of this thesis are not limited to the theory of hybrid systems as they have implications in the analysis and design of practically relevant engineering control systems. In this regard, we develop general control strategies for dynamical systems that are applicable, for example, to autonomous vehicles, multi-link pendulums, and juggling systems.

Book Cooperative Control of Dynamical Systems

Download or read book Cooperative Control of Dynamical Systems written by Zhihua Qu and published by Springer Science & Business Media. This book was released on 2009-02-07 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stability theory has allowed us to study both qualitative and quantitative properties of dynamical systems, and control theory has played a key role in designing numerous systems. Contemporary sensing and communication n- works enable collection and subscription of geographically-distributed inf- mation and such information can be used to enhance signi?cantly the perf- manceofmanyofexisting systems. Throughasharedsensing/communication network,heterogeneoussystemscannowbecontrolledtooperaterobustlyand autonomously; cooperative control is to make the systems act as one group and exhibit certain cooperative behavior, and it must be pliable to physical and environmental constraints as well as be robust to intermittency, latency and changing patterns of the information ?ow in the network. This book attempts to provide a detailed coverage on the tools of and the results on analyzing and synthesizing cooperative systems. Dynamical systems under consideration can be either continuous-time or discrete-time, either linear or non-linear, and either unconstrained or constrained. Technical contents of the book are divided into three parts. The ?rst part consists of Chapters 1, 2, and 4. Chapter 1 provides an overview of coope- tive behaviors, kinematical and dynamical modeling approaches, and typical vehicle models. Chapter 2 contains a review of standard analysis and design tools in both linear control theory and non-linear control theory. Chapter 4 is a focused treatment of non-negativematrices and their properties,multipli- tive sequence convergence of non-negative and row-stochastic matrices, and the presence of these matrices and sequences in linear cooperative systems.

Book Modelling and Control of Mini Flying Machines

Download or read book Modelling and Control of Mini Flying Machines written by Pedro Castillo and published by Springer Science & Business Media. This book was released on 2005-06 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Problems in the motion control of aircraft are of perennial interest to the control engineer as they tend to be of complex and nonlinear nature. Modelling and Control of Mini-Flying Machines is an exposition of models developed for various types of mini-aircraft: • planar Vertical Take-off and Landing aircraft; • helicopters; • quadrotor mini-rotorcraft; • other fixed-wing aircraft; • blimps. For each of these it propounds: • detailed models derived from Euler-Lagrange methods; • appropriate nonlinear control strategies and convergence properties; • real-time experimental comparisons of the performance of control algorithms; • review of the principal sensors, on-board electronics, real-time architecture and communications systems for mini-flying machine control, including discussion of their performance; • detailed explanation of the use of the Kalman filter to flying machine localization. To researchers and students in nonlinear control and its applications Modelling and Control of Mini-Flying Machines provides valuable insights to the application of real-time nonlinear techniques in an always challenging area. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Book Cooperatively Interacting Vehicles

Download or read book Cooperatively Interacting Vehicles written by Christoph Stiller and published by Springer Nature. This book was released on with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Autonomous Vehicle Navigation

Download or read book Autonomous Vehicle Navigation written by Lounis Adouane and published by CRC Press. This book was released on 2016-04-21 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improve the Safety, Flexibility, and Reliability of Autonomous Navigation in Complex EnvironmentsAutonomous Vehicle Navigation: From Behavioral to Hybrid Multi-Controller Architectures explores the use of multi-controller architectures in fully autonomous robot navigation-even in highly dynamic and cluttered environments. Accessible to researchers

Book Formation Control of Multiple Autonomous Vehicle Systems

Download or read book Formation Control of Multiple Autonomous Vehicle Systems written by Hugh H. T. Liu and published by John Wiley & Sons. This book was released on 2018-07-04 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text explores formation control of vehicle systems and introduces three representative systems: space systems, aerial systems and robotic systems Formation Control of Multiple Autonomous Vehicle Systems offers a review of the core concepts of dynamics and control and examines the dynamics and control aspects of formation control in order to study a wide spectrum of dynamic vehicle systems such as spacecraft, unmanned aerial vehicles and robots. The text puts the focus on formation control that enables and stabilizes formation configuration, as well as formation reconfiguration of these vehicle systems. The authors develop a uniform paradigm of describing vehicle systems’ dynamic behaviour that addresses both individual vehicle’s motion and overall group’s movement, as well as interactions between vehicles. The authors explain how the design of proper control techniques regulate the formation motion of these vehicles and the development of a system level decision-making strategy that increases the level of autonomy for the entire group of vehicles to carry out their missions. The text is filled with illustrative case studies in the domains of space, aerial and robotics. • Contains uniform coverage of "formation" dynamic systems development • Presents representative case studies in selected applications in the space, aerial and robotic systems domains • Introduces an experimental platform of using laboratory three-degree-of-freedom helicopters with step-by-step instructions as an example • Provides open source example models and simulation codes • Includes notes and further readings that offer details on relevant research topics, recent progress and further developments in the field Written for researchers and academics in robotics and unmanned systems looking at motion synchronization and formation problems, Formation Control of Multiple Autonomous Vehicle Systems is a vital resource that explores the motion synchronization and formation control of vehicle systems as represented by three representative systems: space systems, aerial systems and robotic systems.