Download or read book The Interaction of Ocean Waves and Wind written by Peter Janssen and published by Cambridge University Press. This book was released on 2004-10-28 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book was published in 2004. The Interaction of Ocean Waves and Wind describes in detail the two-way interaction between wind and ocean waves and shows how ocean waves affect weather forecasting on timescales of 5 to 90 days. Winds generate ocean waves, but at the same time airflow is modified due to the loss of energy and momentum to the waves; thus, momentum loss from the atmosphere to the ocean depends on the state of the waves. This volume discusses ocean wave evolution according to the energy balance equation. An extensive overview of nonlinear transfer is given, and as a by-product the role of four-wave interactions in the generation of extreme events, such as freak waves, is discussed. Effects on ocean circulation are described. Coupled ocean-wave, atmosphere modelling gives improved weather and wave forecasts. This volume will interest ocean wave modellers, physicists and applied mathematicians, and engineers interested in shipping and coastal protection.
Download or read book Internal Gravity Waves written by Bruce R. Sutherland and published by Cambridge University Press. This book was released on 2010-09-02 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of internal gravity waves provides many challenges: they move along interfaces as well as in fully three-dimensional space, at relatively fast temporal and small spatial scales, making them difficult to observe and resolve in weather and climate models. Solving the equations describing their evolution poses various mathematical challenges associated with singular boundary value problems and large amplitude dynamics. This book provides the first comprehensive treatment of the theory for small and large amplitude internal gravity waves. Over 120 schematics, numerical simulations and laboratory images illustrate the theory and mathematical techniques, and 130 exercises enable the reader to apply their understanding of the theory. This is an invaluable single resource for academic researchers and graduate students studying the motion of waves within the atmosphere and ocean, and also mathematicians, physicists and engineers interested in the properties of propagating, growing and breaking waves.
Download or read book Dynamics of Internal Gravity Waves in the Ocean written by Yu.Z. Miropol'sky and published by Springer Science & Business Media. This book was released on 2001-04-30 with total page 750 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph creates a systematic interpretation of the theoretical and the most actual experimental aspects of the internal wave dynamics in the ocean. Firstly, it draws attention to the important physical effects from an oceanographical point of view which are presented in mathematical descriptions. Secondly, the book serves as an introduction to the range of modern ideas and the methods in the study of wave processes in dispersive media. The book is meant for specialists in physics of the ocean, oceanography, geophysics, hydroacoustics.
Download or read book Ocean Dynamics written by Dirk Olbers and published by Springer Science & Business Media. This book was released on 2012-04-27 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ocean Dynamics’ is a concise introduction to the fundamentals of fluid mechanics, non-equilibrium thermodynamics and the common approximations for geophysical fluid dynamics, presenting a comprehensive approach to large-scale ocean circulation theory. The book is written on the physical and mathematical level of graduate students in theoretical courses of physical oceanography, meteorology and environmental physics. An extensive bibliography and index, extensive side notes and recommendations for further reading, and a comparison with the specific atmospheric physics where applicable, makes this volume also a useful reading for researchers. Each of the four parts of the book – fundamental laws, common approximations, ocean waves, oceanic turbulence and eddies, and selected aspects of ocean dynamics – starts with elementary considerations, blending then classical topics with more advanced developments of fluid mechanics and theoretical oceanography. The last part covers the theory of the global wind-driven circulation in homogeneous and stratified regimes, the circulation and overturning in the Southern Ocean, and the global meridional overturning and thermohaline-driven circulation. Emphasis is placed on simple physical models rather than access to extensive numerical results, enabling students to understand and reproduce the complex theory mostly by analytical means. All equations and models are derived in detail and illustrated by numerous figures. The appendix provides short excursions into the mathematical background, such as vector analysis, statistics, and differential equations
Download or read book Waves in the Ocean written by P.H. LeBlond and published by Elsevier. This book was released on 1981-01-01 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book which will be welcomed not only by researchers and engineers, but also by teachers and students, as it contains the only comprehensive review of the dynamics of ocean waves. Existing books are now either out of date or restricted to specialized aspects of the subject, whereas this book covers all types of ocean waves, ranging from capillary to planetary waves. Because of its completeness of coverage, its use of elementary mathematics and the provision of numerous problems and exercises, the book will be an indispensable text for everyone. It is completed by a very lengthy bibliography which includes many references to the Russian literature.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1988 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Dynamics of the Upper Ocean written by Owen M. Phillips and published by . This book was released on 1980-01 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Advances in Passive Microwave Remote Sensing of Oceans written by Victor Raizer and published by CRC Press. This book was released on 2024-09-05 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition introduces the fundamentals of passive microwave remote sensing of oceans, including the physical principles of microwave radiometry, novel observational data, their interpretation, and applications. It not only demonstrates and examines the recent advantages and state of the art of microwave data but also provides guidance for explaining complex ocean studies and advanced applications. All chapters are thoroughly updated with detailed analysis of space‐based microwave missions, and a new chapter on space‐based microwave radiometer experiments has been added. This book discusses the power of microwave remote sensing as an efficient tool for diagnostics of ocean phenomena in research and education. Features New to this Edition: • Includes a new chapter and additional data, images, illustrations, and references. • Uses ocean microwave data, acquired from different platforms, to illustrate different methods of analysis and interpretation. • Updates information on recent and important satellite missions dedicated to microwave remote sensing of oceans. • Offers more detailed analysis of multiband microwave data and images. • Provides examples of microwave data that cover different ocean environmental phenomena and hydro‐physical fields, including global and local ocean features. • Presents additional material on advanced applications, including detection capabilities. This book is intended for postgraduate students and professionals working in fields related to remote sensing, geography, oceanography, civil, environmental, and geotechnical engineering.
Download or read book Wave Turbulence written by Sergey Nazarenko and published by Springer Science & Business Media. This book was released on 2011-02-12 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as “frozen” turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field.
Download or read book Solitons and the Inverse Scattering Transform written by Mark J. Ablowitz and published by SIAM. This book was released on 1981-01-01 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: A study, by two of the major contributors to the theory, of the inverse scattering transform and its application to problems of nonlinear dispersive waves that arise in fluid dynamics, plasma physics, nonlinear optics, particle physics, crystal lattice theory, nonlinear circuit theory and other areas. A soliton is a localized pulse-like nonlinear wave that possesses remarkable stability properties. Typically, problems that admit soliton solutions are in the form of evolution equations that describe how some variable or set of variables evolve in time from a given state. The equations may take a variety of forms, for example, PDEs, differential difference equations, partial difference equations, and integrodifferential equations, as well as coupled ODEs of finite order. What is surprising is that, although these problems are nonlinear, the general solution that evolves from almost arbitrary initial data may be obtained without approximation. For such exactly solvable problems, the inverse scattering transform provides the general solution of their initial value problems. It is equally surprising that some of these exactly solvable problems arise naturally as models of physical phenomena. Simply put, the inverse scattering transform is a nonlinear analog of the Fourier transform used for linear problems. Its value lies in the fact that it allows certain nonlinear problems to be treated by what are essentially linear methods. Chapters 1 and 2 of the book describe in detail the theory of the inverse scattering transform. Chapter 3 discusses alternate methods for these exactly solvable problems and the interconnections among them. Physical applications are described in Chapter 4, where, for example, similarities between deep water waves and nonlinear optics become evident. Because of the fundamental role of linear theory, there is an extensive appendix that addresses the linear problems and their solutions.
Download or read book Wave Interactions and Fluid Flows written by Alex D. D. Craik and published by Cambridge University Press. This book was released on 1988-07-07 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This up-to-date and comprehensive account of theory and experiment on wave-interaction phenomena covers fluids both at rest and in their shear flows. It includes, on the one hand, water waves, internal waves, and their evolution, interaction, and associated wave-driven means flow and, on the other hand, phenomena on nonlinear hydrodynamic stability, especially those leading to the onset of turbulence. This study provide a particularly valuable bridge between these two similar, yet different, classes of phenomena. It will be of value to oceanographers, meteorologists, and those working in fluid mechanics, atmospheric and planetary physics, plasma physics, aeronautics, and geophysical and astrophysical fluid dynamics.
Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1973 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Kolmogorov Spectra of Turbulence I written by Vladimir E. Zakharov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the human organism is itself an open system, we are naturally curious about the behavior of other open systems with fluxes of matter, energy or information. Of the possible open systems, it is those endowed with many degrees of freedom and strongly deviating from equilibrium that are most challenging. A simple but very significant example of such a system is given by developed turbulence in a continuous medium, where we can discern astonishing features of universality. This two-volume monograph deals with the theory of turbulence viewed as a general physical phenomenon. In addition to vortex hydrodynamic turbulence, it considers various cases of wave turbulence in plasmas, magnets, atmosphere, ocean and space. A sound basis for discussion is provided by the concept of cascade turbulence with relay energy transfer over different scales and modes. We shall show how the initial cascade hypothesis turns into an elegant theory yielding the Kolmogorov spectra of turbulence as exact solutions. We shall describe the further development of the theory discussing stability prob lems and modes of Kolmogorov spectra formation, as well as their matching with sources and sinks. This volume is dedicated to developed wave turbulence in different media.
Download or read book Energy Transfers in Atmosphere and Ocean written by Carsten Eden and published by Springer. This book was released on 2019-01-23 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes a recent effort combining interdisciplinary expertise within the Collaborative Research Centre “Energy transfers in atmosphere and ocean” (TRR-181), which was funded by the German Research Foundation (DFG). Energy transfers between the three dynamical regimes – small-scale turbulence, internal gravity waves and geostrophically balanced motion – are fundamental to the energy cycle of both the atmosphere and the ocean. Nonetheless, they remain poorly understood and quantified, and have yet to be adequately represented in today’s climate models. Since interactions between the dynamical regimes ultimately link the smallest scales to the largest ones through a range of complex processes, understanding these interactions is essential to constructing atmosphere and ocean models and to predicting the future climate. To this end, TRR 181 combines expertise in applied mathematics, meteorology, and physical oceanography. This book provides an overview of representative specific topics addressed by TRR 181, ranging from - a review of a coherent hierarchy of models using consistent scaling and approximations, and revealing the underlying Hamiltonian structure - a systematic derivation and implementation of stochastic and backscatter parameterisations - an exploration of the dissipation of large-scale mean or eddying balanced flow and ocean eddy parameterisations; and - a study on gravity wave breaking and mixing, the interaction of waves with the mean flow and stratification, wave-wave interactions and gravity wave parameterisations to topics of a more numerical nature such as the spurious mixing and dissipation of advection schemes, and direct numerical simulations of surface waves at the air-sea interface. In TRR 181, the process-oriented topics presented here are complemented by an operationally oriented synthesis focusing on two climate models currently being developed in Germany. In this way, the goal of TRR 181 is to help reduce the biases in and increase the accuracy of atmosphere and ocean models, and ultimately to improve climate models and climate predictions.
Download or read book Journal of the Physical Society of Japan written by Nihon Butsuri Gakkai and published by . This book was released on 1989 with total page 1422 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Elements of Physical Oceanography written by and published by Academic Press. This book was released on 2009-08-26 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elements of Physical Oceanography is a derivative of the Encyclopedia of Ocean Sciences, Second Edition and serves as an important reference on current physical oceanography knowledge and expertise in one convenient and accessible source. Its selection of articles—all written by experts in their field—focuses on ocean physics, air-sea transfers, waves, mixing, ice, and the processes of transfer of properties such as heat, salinity, momentum and dissolved gases, within and into the ocean. Elements of Physical Oceanography serves as an ideal reference for topical research. References related articles in physical oceanography to facilitate further research Richly illustrated with figures and tables that aid in understanding key concepts Includes an introductory overview and then explores each topic in detail, making it useful to experts and graduate-level researchers Topical arrangement makes it the perfect desk reference
Download or read book Hydrodynamic Stability written by P. G. Drazin and published by Cambridge University Press. This book was released on 2004-08-05 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydrodynamic stability is of fundamental importance in fluid mechanics and is concerned with the problem of transition from laminar to turbulent flow. Drazin and Reid emphasise throughout the ideas involved, the physical mechanisms, the methods used, and the results obtained, and, wherever possible, relate the theory to both experimental and numerical results. A distinctive feature of the book is the large number of problems it contains. These problems not only provide exercises for students but also provide many additional results in a concise form. This new edition of this celebrated introduction differs principally by the inclusion of detailed solutions for those exercises, and by the addition of a Foreword by Professor J. W. Miles.