EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Quaternionic de Branges Spaces and Characteristic Operator Function

Download or read book Quaternionic de Branges Spaces and Characteristic Operator Function written by Daniel Alpay and published by Springer Nature. This book was released on 2020-01-27 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work contributes to the study of quaternionic linear operators. This study is a generalization of the complex case, but the noncommutative setting of quaternions shows several interesting new features, see e.g. the so-called S-spectrum and S-resolvent operators. In this work, we study de Branges spaces, namely the quaternionic counterparts of spaces of analytic functions (in a suitable sense) with some specific reproducing kernels, in the unit ball of quaternions or in the half space of quaternions with positive real parts. The spaces under consideration will be Hilbert or Pontryagin or Krein spaces. These spaces are closely related to operator models that are also discussed. The focus of this book is the notion of characteristic operator function of a bounded linear operator A with finite real part, and we address several questions like the study of J-contractive functions, where J is self-adjoint and unitary, and we also treat the inverse problem, namely to characterize which J-contractive functions are characteristic operator functions of an operator. In particular, we prove the counterpart of Potapov's factorization theorem in this framework. Besides other topics, we consider canonical differential equations in the setting of slice hyperholomorphic functions and we define the lossless inverse scattering problem. We also consider the inverse scattering problem associated with canonical differential equations. These equations provide a convenient unifying framework to discuss a number of questions pertaining, for example, to inverse scattering, non-linear partial differential equations and are studied in the last section of this book.

Book Quaternionic Closed Operators  Fractional Powers and Fractional Diffusion Processes

Download or read book Quaternionic Closed Operators Fractional Powers and Fractional Diffusion Processes written by Fabrizio Colombo and published by Springer. This book was released on 2019-07-10 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a new theory for evolution operators and a new method for defining fractional powers of vector operators. This new approach allows to define new classes of fractional diffusion and evolution problems. These innovative methods and techniques, based on the concept of S-spectrum, can inspire researchers from various areas of operator theory and PDEs to explore new research directions in their fields. This monograph is the natural continuation of the book: Spectral Theory on the S-Spectrum for Quaternionic Operators by Fabrizio Colombo, Jonathan Gantner, and David P. Kimsey (Operator Theory: Advances and Applications, Vol. 270).

Book Recent Developments in Operator Theory  Mathematical Physics and Complex Analysis

Download or read book Recent Developments in Operator Theory Mathematical Physics and Complex Analysis written by Daniel Alpay and published by Springer Nature. This book was released on 2023-04-11 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features a collection of papers by plenary, semi-plenary and invited contributors at IWOTA2021, held at Chapman University in hybrid format in August 2021. The topics span areas of current research in operator theory, mathematical physics, and complex analysis.

Book Michele Sce s Works in Hypercomplex Analysis

Download or read book Michele Sce s Works in Hypercomplex Analysis written by Fabrizio Colombo and published by Springer Nature. This book was released on 2020-10-24 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents English translations of Michele Sce’s most important works, originally written in Italian during the period 1955-1973, on hypercomplex analysis and algebras of hypercomplex numbers. Despite their importance, these works are not very well known in the mathematics community because of the language they were published in. Possibly the most remarkable instance is the so-called Fueter-Sce mapping theorem, which is a cornerstone of modern hypercomplex analysis, and is not yet understood in its full generality. This volume is dedicated to revealing and describing the framework Sce worked in, at an exciting time when the various generalizations of complex analysis in one variable were still in their infancy. In addition to faithfully translating Sce’s papers, the authors discuss their significance and explain their connections to contemporary research in hypercomplex analysis. They also discuss many concrete examples that can serve as a basis for further research. The vast majority of the results presented here will be new to readers, allowing them to finally access the original sources with the benefit of comments from fellow mathematicians active in the field of hypercomplex analysis. As such, the book offers not only an important chapter in the history of hypercomplex analysis, but also a roadmap for further exciting research in the field.

Book Slice Hyperholomorphic Schur Analysis

Download or read book Slice Hyperholomorphic Schur Analysis written by Daniel Alpay and published by Birkhäuser. This book was released on 2016-12-09 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book defines and examines the counterpart of Schur functions and Schur analysis in the slice hyperholomorphic setting. It is organized into three parts: the first introduces readers to classical Schur analysis, while the second offers background material on quaternions, slice hyperholomorphic functions, and quaternionic functional analysis. The third part represents the core of the book and explores quaternionic Schur analysis and its various applications. The book includes previously unpublished results and provides the basis for new directions of research.

Book Operator Theory on One Sided Quaternion Linear Spaces  Intrinsic  S  Functional Calculus and Spectral Operators

Download or read book Operator Theory on One Sided Quaternion Linear Spaces Intrinsic S Functional Calculus and Spectral Operators written by Jonathan Gantner and published by American Mathematical Society. This book was released on 2021-02-10 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two major themes drive this article: identifying the minimal structure necessary to formulate quaternionic operator theory and revealing a deep relation between complex and quaternionic operator theory. The theory for quaternionic right linear operators is usually formulated under the assumption that there exists not only a right- but also a left-multiplication on the considered Banach space $V$. This has technical reasons, as the space of bounded operators on $V$ is otherwise not a quaternionic linear space. A right linear operator is however only associated with the right multiplication on the space and in certain settings, for instance on quaternionic Hilbert spaces, the left multiplication is not defined a priori, but must be chosen randomly. Spectral properties of an operator should hence be independent of the left multiplication on the space.

Book Exercises in Applied Mathematics

Download or read book Exercises in Applied Mathematics written by Daniel Alpay and published by Springer Nature. This book was released on with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2007 with total page 1208 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Noncommutative Functional Calculus

Download or read book Noncommutative Functional Calculus written by Prof. Fabrizio Colombo Politecnico di Milano and published by Springer Science & Business Media. This book was released on 2011-03-18 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a functional calculus for n-tuples of not necessarily commuting linear operators. In particular, a functional calculus for quaternionic linear operators is developed. These calculi are based on a new theory of hyperholomorphicity for functions with values in a Clifford algebra: the so-called slice monogenic functions which are carefully described in the book. In the case of functions with values in the algebra of quaternions these functions are named slice regular functions. Except for the appendix and the introduction all results are new and appear for the first time organized in a monograph. The material has been carefully prepared to be as self-contained as possible. The intended audience consists of researchers, graduate and postgraduate students interested in operator theory, spectral theory, hypercomplex analysis, and mathematical physics.

Book Hypercomplex Analysis  New Perspectives and Applications

Download or read book Hypercomplex Analysis New Perspectives and Applications written by Swanhild Bernstein and published by Springer. This book was released on 2014-10-10 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hypercomplex analysis is the extension of complex analysis to higher dimensions where the concept of a holomorphic function is substituted by the concept of a monogenic function. In recent decades this theory has come to the forefront of higher dimensional analysis. There are several approaches to this: quaternionic analysis which merely uses quaternions, Clifford analysis which relies on Clifford algebras, and generalizations of complex variables to higher dimensions such as split-complex variables. This book includes a selection of papers presented at the session on quaternionic and hypercomplex analysis at the ISAAC conference 2013 in Krakow, Poland. The topics covered represent new perspectives and current trends in hypercomplex analysis and applications to mathematical physics, image analysis and processing, and mechanics.

Book System Theory  the Schur Algorithm and Multidimensional Analysis

Download or read book System Theory the Schur Algorithm and Multidimensional Analysis written by Daniel Alpay and published by Springer Science & Business Media. This book was released on 2007-03-20 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains six peer-refereed articles written on the occasion of the workshop Operator theory, system theory and scattering theory: multidimensional generalizations and related topics, held at the Department of Mathematics of the Ben-Gurion University of the Negev in June, 2005. The book will interest a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.

Book Operator Theory  Systems Theory and Scattering Theory  Multidimensional Generalizations

Download or read book Operator Theory Systems Theory and Scattering Theory Multidimensional Generalizations written by Daniel Alpay and published by Springer Science & Business Media. This book was released on 2005-03-22 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a selection of papers, from experts in the area, on multidimensional operator theory. Topics considered include the non-commutative case, function theory in the polydisk, hyponormal operators, hyperanalytic functions, and holomorphic deformations of linear differential equations. Operator Theory, Systems Theory and Scattering Theory will be of interest to a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.

Book Monotone Matrix Functions and Analytic Continuation

Download or read book Monotone Matrix Functions and Analytic Continuation written by W.F.Jr. Donoghue and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Pick function is a function that is analytic in the upper half-plane with positive imaginary part. In the first part of this book we try to give a readable account of this class of functions as well as one of the standard proofs of the spectral theorem based on properties of this class. In the remainder of the book we treat a closely related topic: Loewner's theory of monotone matrix functions and his analytic continuation theorem which guarantees that a real function on an interval of the real axis which is a monotone matrix function of arbitrarily high order is the restriction to that interval of a Pick function. In recent years this theorem has been complemented by the Loewner-FitzGerald theorem, giving necessary and sufficient conditions that the continuation provided by Loewner's theorem be univalent. In order that our presentation should be as complete and trans parent as possible, we have adjoined short chapters containing the in formation about reproducing kernels, almost positive matrices and certain classes of conformal mappings needed for our proofs.

Book An Advanced Complex Analysis Problem Book

Download or read book An Advanced Complex Analysis Problem Book written by Daniel Alpay and published by Birkhäuser. This book was released on 2015-11-13 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an exercises book at the beginning graduate level, whose aim is to illustrate some of the connections between functional analysis and the theory of functions of one variable. A key role is played by the notions of positive definite kernel and of reproducing kernel Hilbert space. A number of facts from functional analysis and topological vector spaces are surveyed. Then, various Hilbert spaces of analytic functions are studied.

Book Indefinite Inner Product Spaces

Download or read book Indefinite Inner Product Spaces written by J. Bognar and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: By definition, an indefinite inner product space is a real or complex vector space together with a symmetric (in the complex case: hermi tian) bilinear form prescribed on it so that the corresponding quadratic form assumes both positive and negative values. The most important special case arises when a Hilbert space is considered as an orthogonal direct sum of two subspaces, one equipped with the original inner prod uct, and the other with -1 times the original inner product. The subject first appeared thirty years ago in a paper of Dirac [1] on quantum field theory (d. also Pauli [lJ). Soon afterwards, Pontrja gin [1] gave the first mathematical treatment of an indefinite inner prod uct space. Pontrjagin was unaware of the investigations of Dirac and Pauli; on the other hand, he was inspired by a work of Sobolev [lJ, unpublished up to 1960, concerning a problem of mechanics. The attempts of Dirac and Pauli to apply the concept and elemen tary properties of indefinite inner product spaces to field theory have been renewed by several authors. At present it is not easy to judge which of their results will contribute to the final form of this part of physics. The following list of references should serve as a guide to the extensive literature: Bleuler [1], Gupta [lJ, Kallen and Pauli [lJ, Heisen berg [lJ-[4J, Bogoljubov, Medvedev and Polivanov [lJ, K.L. Nagy [lJ-[3], Berezin [lJ, Arons, Han and Sudarshan [1], Lee and Wick [1J.

Book Regular Functions of a Quaternionic Variable

Download or read book Regular Functions of a Quaternionic Variable written by Graziano Gentili and published by Springer. This book was released on 2023-09-26 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys the foundations of the theory of slice regular functions over the quaternions, introduced in 2006, and gives an overview of its generalizations and applications. As in the case of other interesting quaternionic function theories, the original motivations were the richness of the theory of holomorphic functions of one complex variable and the fact that quaternions form the only associative real division algebra with a finite dimension n>2. (Slice) regular functions quickly showed particularly appealing features and developed into a full-fledged theory, while finding applications to outstanding problems from other areas of mathematics. For instance, this class of functions includes polynomials and power series. The nature of the zero sets of regular functions is particularly interesting and strictly linked to an articulate algebraic structure, which allows several types of series expansion and the study of singularities. Integral representation formulas enrich the theory and are fundamental to the construction of a noncommutative functional calculus. Regular functions have a particularly nice differential topology and are useful tools for the construction and classification of quaternionic orthogonal complex structures, where they compensate for the scarcity of conformal maps in dimension four. This second, expanded edition additionally covers a new branch of the theory: the study of regular functions whose domains are not axially symmetric. The volume is intended for graduate students and researchers in complex or hypercomplex analysis and geometry, function theory, and functional analysis in general.

Book Partial Differential Equations

Download or read book Partial Differential Equations written by Rainer H. Picard and published by Walter de Gruyter. This book was released on 2011 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev Lattice structure, a simple extension of the well established notion of a chain (or scale) of Hilbert spaces. The focus on a Hilbert space (rather than an apparently more general Banach space) setting is not a severe constraint, but rather a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations. In contrast to other texts on partial differential equations which consider either specific types of partial differential equations or apply a collection of tools for solving a variety of partial differential equations, this book takes a more global point of view by focussing on the issues involved in determining the appropriate functional analytic setting in which a solution theory can naturally be developed. Applications to many areas of mathematical physics are presented. The book aims to be a largely self-contained. Full proofs to all but the most straightforward results are provided, keeping to a minimum references to other literature for essential material. It is therefore highly suitable as a resource for graduate courses and for researchers, who will find new results for particular evolutionary system from mathematical physics.