EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book QUANTUM STUDY OF INELASTIC TRANSFERS IN ATOM ATOM AND ATOM MOLECULE COLLISIONS

Download or read book QUANTUM STUDY OF INELASTIC TRANSFERS IN ATOM ATOM AND ATOM MOLECULE COLLISIONS written by Didier Lemoine and published by . This book was released on 1988 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: I. ETUDE DES TRANSFERTS ENTRE COMPOSANTES DE STRUCTURE FINE D'UN ATOME ALCALIN DANS UN ETAT ELECTRONIQUE DOUBLET P INDUITS PAR COLLISION AVEC UN ATOME SANS STRUCTURE; DETERMINATION DES SECTIONS EFFICACES ET DESCRIPTION TOTALEMENT ADIABATIQUE DE LA DYNAMIQUE DE COLLISION, METTANT EN EVIDENCE UN NOUVEAU MECANISME DE COUPLAGE. II. ETUDE DES TRANSFERTS ROTATIONNELS DANS N::(2) (ETAT FONDAMENTAL) ET LI::(2) (PREMIER ETAT EXCITE) INDUITS PAR COLLISION AVEC UN ATOME DE GAZ RARE; EXPLORATION DU DOMAINE DE VALIDITE DES DEUX APPROXIMATIONS COURAMMENT UTILISEES; ETUDE DE LA DISTRIBUTION ANGULAIRE DE LA DIFFUSION DANS LE SYSTEME DU CENTRE DE MASSE POUR N::(2)-NE; EXPLICATION DE L'ORIGINE DES EFFETS D'ASYMETRIE OBSERVES DANS LES TRANSITIONS ROTATIONNELLES POUR LI::(2)-HE, NE.

Book Atom   Molecule Collision Theory

    Book Details:
  • Author : Richard Barry Bernstein
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-11
  • ISBN : 1461329132
  • Pages : 785 pages

Download or read book Atom Molecule Collision Theory written by Richard Barry Bernstein and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi mental and theoretical. This is probably because elastic, inelastic, and reactive intermolecular collisions are of central importance in many of the fundamental processes of chemistry and physics. One small area of this field, namely atom-molecule collisions, is now beginning to be "understood" from first principles. Although the more general subject of the collisions of polyatomic molecules is of great im portance and intrinsic interest, it is still too complex from the viewpoint of theoretical understanding. However, for atoms and simple molecules the essential theory is well developed, and computational methods are sufficiently advanced that calculations can now be favorably compared with experimental results. This "coming together" of the subject (and, incidentally, of physicists and chemists !), though still in an early stage, signals that the time is ripe for an appraisal and review of the theoretical basis of atom-molecule collisions. It is especially important for the experimentalist in the field to have a working knowledge of the theory and computational methods required to describe the experimentally observable behavior of the system. By now many of the alternative theoretical approaches and computational procedures have been tested and intercompared. More-or-Iess optimal methods for dealing with each aspect are emerging. In many cases working equations, even schematic algorithms, have been developed, with assumptions and caveats delineated.

Book Introduction to the Theory of Collisions of Electrons with Atoms and Molecules

Download or read book Introduction to the Theory of Collisions of Electrons with Atoms and Molecules written by S.P. Khare and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: An understanding of the collisions between micro particles is of great importance for the number of fields belonging to physics, chemistry, astrophysics, biophysics etc. The present book, a theory for electron-atom and molecule collisions is developed using non-relativistic quantum mechanics in a systematic and lucid manner. The scattering theory is an essential part of the quantum mechanics course of all universities. During the last 30 years, the author has lectured on the topics presented in this book (collisions physics, photon-atom collisions, electron-atom and electron-molecule collisions, "electron-photon delayed coincidence technique", etc.) at many institutions including Wayne State University, Detroit, MI, The University of Western Ontario, Canada, and The Meerut University, India. The present book is the outcome of those lectures and is written to serve as a textbook for post-graduate and pre-PhD students and as a reference book for researchers.

Book Fast Ion atom and Ion molecule Collisions

Download or read book Fast Ion atom and Ion molecule Collisions written by Dzevad Belkic and published by World Scientific. This book was released on 2013 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: The principal goal of this book is to provide state-of-the-art coverage of the non-relativistic three- and four-body theories at intermediate and high energy ion-atom and ion-molecule collisions. The focus is on the most frequently studied processes: electron capture, ionization, transfer excitation and transfer ionization. The content is suitable both for graduate students and experienced researchers. For these collisions, the literature has seen enormous renewal of activity in the development and applications of quantum-mechanical theories. This subject is of relevance in several branches of science and technology, like accelerator-based physics, the search for new sources of energy and high temperature fusion of light ions. Other important applications are in life sciences via medicine, where high-energy ion beams are used in radiotherapy for which a number of storage ring accelerators are in full operation, under construction or planned to be built worldwide. Therefore, it is necessary to review this field for its most recent advances with an emphasis on the prospects for multidisciplinary applications.This book is accompanied by Interdisciplinary Research on Particle Collisions and Quantitative Spectroscopy Volume 2 - Fast Collisions of Light Ions with Matter: Charge Exchange and Ionization.

Book Relativistic Collisions of Structured Atomic Particles

Download or read book Relativistic Collisions of Structured Atomic Particles written by Alexander Voitkiv and published by Springer Science & Business Media. This book was released on 2008-07-20 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last two decades the explorations of di?erent processes accom- nyingion–atom collisions athigh-impactenergieshavebeenasubjectofmuch interest. This interest was generated not only by the advent of accelerators of relativistic heavy ions which enabled one to investigate these collisions in an experiment and possible applications of obtained results in other ?elds of physics, but also by the variety of physical mechanisms underlying the atomic collisional phenomena at high impact energies. Often highly charged projectiles produced at accelerators of heavy ions are not fully stripped ions but carry one or more very tightly bound el- trons. In collisions with atomic targets, these electrons can be excited or lost and this may occur simultaneously with electronic transitions in the target. The present book concentrates on, and may serve as an introduction to, th- retical methods which are used to describe the projectile–electron transitions occurringinhigh-energycollisionsbetweenionsandneutralatoms.Special- tention is given to relativistic impact energies and highly charged projectiles. Experimental results are used merely as illustrations and tests for theory. This book will be useful to graduate students and professional scientists who are interested in studying atomic collisions occurring at high-impact - ergies. It assumes that the reader possesses the basic knowledge in classical electrodynamics and nonrelativistic and relativistic quantum mechanics.

Book Introduction to Atomic and Molecular Collisions

Download or read book Introduction to Atomic and Molecular Collisions written by R. E. Johnson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: In working with graduate students in engineering physics at the University of Virginia on research problems in gas kinetics, radiation biology, ion materials interactions, and upper-atmosphere chemistry, it became quite apparent that there was no satisfactory text available to these students on atomic and molecular collisions. For graduate students in physics and quantum chemistry and researchers in atomic and molecular interactions there are a large number of excellent advanced texts. However, for students in applied science, who require some knowledge and understanding of col lision phenomena, such texts are of little use. These students often have some background in modern physics and/or chemistry but lack graduate level course work in quantum mechanics. Such students, however, tend to have a good intuitive grasp of classical mechanics and have been exposed to wave phenomena in some form (e. g. , electricity and magnetism, acoustics, etc. ). Further, their requirements in using collision processes and employing models do not generally include the use of formal scattering theory, a large fraction of the content of many advanced texts. In fact, most researchers who work in the area of atomic and molecular collisions tend to pride themselves on their ability to describe results using simple theoretical models based on classical and semiclassical methods.

Book Collision Theory for Atoms and Molecules

Download or read book Collision Theory for Atoms and Molecules written by Franco A. Gianturco and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: The NATO-Advanced Study Institute on "Collision Theory for Atoms and Molecules" was made possible by the main sponsorship and the generous financial support of the NATO Scientific Affairs Division in Brussels. Belgium. Special thanks are therefore due to the late Dr. Mario Di Lullo and to Dr. Craig Sinclair. of this Division. who repeatedly advised us and kept us aware of administrative requirements. The Institute was also assisted by the financial aid from the Scientific Committees for Chemistry and Physics of the Italian National Research Council (CNR). The search and selection of a suitable location. one which participants would easily reach from any of Italy's main airports, was ably aided by the Personnel of the Scuola Normale Superiore of Pisa and made possible by its Directorship. Our thanks therefore go to its present director. Prof. L. Radicati. and to its past director. Prof. E. Vesentini who first agreed to our use of their main building in Pisa and of their palatial facilities at the "Palazzone" in Cortona.

Book The Transfer of Molecular Energies by Collision  Recent Quantum Treatments

Download or read book The Transfer of Molecular Energies by Collision Recent Quantum Treatments written by F. A. Gianturco and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: I I These Lecture Notes are intended as an introduction to the theoretical formulation and computational aspects of the molecular energy transfer processes which take place in an increasingly sophisticated range of molecular scattering experiments. They are directed to chemistry graduate students and emphasize the quantum mechanical approach, with little or no attention to classical and semi classical treatments or to formal presentations. Several Sections of the first Chapters are based on lectures given at the Graduate School of Physics of the University of Genoa a few years ago and I thank the students for their sense of duty in following to the end all those no tation-filled blackboards and transparencies. The kind patience of my wife Carolyn in reading the whole manuscript and improving its form is gratefully acknowledged. Franco A. Gianturco Bari, September 1978 CON TEN T S FOREWORD I NTRODUCTI ON Page 1. A RESUME OF QUANTUM MECHANICAL POTENTIAL SCATTERING 1. 1. General formulation of the problem Page 5 1. 2. Solutions of the radial equation 10 " 1. 3. The method of partial waves 13 1. 4. Some properties of 61. The Born appro~imation 18 1. 5. Properties of the S-matrix: bound states and resonances 23 1. 6. Classical and semiclassical scattering,a set of defi- tions 34 References 44 2. POTENTIAL ENERGY HYPERSURFACE CALCULATIONS FOR SIMPLE SYSTEMS 2. 1. Kinematic considerations 45 2. 2. General development of a priori method 52 2. 3. Some approximate treatments 68 2. 4.

Book Atomic Collisions

    Book Details:
  • Author : Earl W. McDaniel
  • Publisher : Wiley-VCH
  • Release : 1993-05-10
  • ISBN :
  • Pages : 730 pages

Download or read book Atomic Collisions written by Earl W. McDaniel and published by Wiley-VCH. This book was released on 1993-05-10 with total page 730 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deals with elastic, inelastic and reactive collisions between heavy particles. The impact energy range extends from sub-thermal to energies at which nuclear forces become significant. Although the focus is on experiment, theory is integrated with experimental discussions. Scattering resonances, beam monochromators, particle detectors, coincidence measurements and laser photodetachment are among the topics covered. Includes extensive references and problem sets.

Book Physics of Highly Excited Atoms and Ions

Download or read book Physics of Highly Excited Atoms and Ions written by Vladimir S. Lebedev and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to the basic aspects of the physics of highly ex cited (Rydberg) states of atom's. After almost twenty years, this remains a hot topic of modern atomic physics. Such studies are important for many areas of physics and its applications including spectroscopy, astrophysics and radio astronomy, physics of electronic and atomic collisions, kinetics and di agnostics of gases, and low- and high-temperature plasmas. Physical phenom ena in radiative, collisional, and spectral-line broadening processes involving Rydberg atoms and ions are primarily determined by the peculiar properties and exotic features of highly excited states. The growth of interest and research activity in the physics of Rydberg the last two decades was stimulated by an extremely rapid de atoms over velopment of high-resolution laser spectroscopy, methods of selective excita tion and detection of highly excited states, atomic-beam techniques as well as radio astronomy. This has facilitated significant progress in the differ ent directions of the physics of highly excited atoms being of fundamental and practical importance. In particular, evident advances were achieved in studies of the structure and spectra of highly excited atoms, their behavior in static electric and magnetic fields, interactions with electromagnetic ra diation, spectral-line broadening and the shift of Rydberg series, collisions with electrons, ions, atoms, and molecules, etc. The principle objective of the present book is to reflect the most important physical approaches and efficient theoretical techniques in the modem physics of highly excited atoms and ions.

Book Electron Atom and Electron Molecule Collisions

Download or read book Electron Atom and Electron Molecule Collisions written by Jürgen Hinze and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers collected in this volume have been presented during a workshop on "Electron-Atom and Molecule Collisions" held at the Centre for Interdisciplinary Studies of the University of Bielefeld in May 1980. This workshop, part of a larger program concerned with the "Properties and Reactions of Isolated Molecules and Atoms," focused on the theory and computational techniques for the quanti tative description of electron scattering phenomena. With the advances which have been made in the accurate quantum mechanical characterisation of bound states of atoms and molecules, the more complicated description of the unbound systems and resonances important in electron collision processes has matured too. As expli cated in detail in the articles of this volume, the theory for the quantitative explanation of elastic and inelastic electron molecule collisions, of photo- and multiple photon ionization and even for electron impact ionization is well developed in a form which lends itself to a complete quantitative ab initio interpretation and pre diction of the observable effects. Many of the experiences gained and the techniques which have evolved over the years in the com putational characterization of bound states have become an essential basis for this development. To be sure, much needs to be done before we have a complete and detailed theoretical understanding of the known collisional processes and of the phenomena and effects, which may still be un covered with the continuing refinement of the experimental tech niques.

Book Physics of Atomic Collisions

Download or read book Physics of Atomic Collisions written by J. B. Hasted and published by Elsevier Publishing Company. This book was released on 1972 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to the Theory of Atomic and Molecular Collisions

Download or read book Introduction to the Theory of Atomic and Molecular Collisions written by John N. Murrell and published by . This book was released on 1989-09-04 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to the scattering theory of low energy (0.1 to 1.0 eV) atomic and molecular collisions provides a strong theoretical background, maintaining a balance between classical and quantum approaches. Addresses the four main branches of the subject--elastic, inelastic and reactive scattering, and electron excitation--all supported by computational techniques.

Book Molecular Reaction Dynamics

Download or read book Molecular Reaction Dynamics written by Raphael D. Levine and published by Cambridge University Press. This book was released on 2009-06-04 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular reaction dynamics is the study of chemical and physical transformations of matter at the molecular level. The understanding of how chemical reactions occur and how to control them is fundamental to chemists and interdisciplinary areas such as materials and nanoscience, rational drug design, environmental and astrochemistry. This book provides a thorough foundation to this area. The first half is introductory, detailing experimental techniques for initiating and probing reaction dynamics and the essential insights that have been gained. The second part explores key areas including photoselective chemistry, stereochemistry, chemical reactions in real time and chemical reaction dynamics in solutions and interfaces. Typical of the new challenges are molecular machines, enzyme action and molecular control. With problem sets included, this book is suitable for advanced undergraduate and graduate students, as well as being supplementary to chemical kinetics, physical chemistry, biophysics and materials science courses, and as a primer for practising scientists.

Book Nuclear Science Abstracts

Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1976 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Springer Handbook of Atomic  Molecular  and Optical Physics

Download or read book Springer Handbook of Atomic Molecular and Optical Physics written by Gordon W. F. Drake and published by Springer Science & Business Media. This book was released on 2007-02-05 with total page 1505 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprises a comprehensive reference source that unifies the entire fields of atomic molecular and optical (AMO) physics, assembling the principal ideas, techniques and results of the field. 92 chapters written by about 120 authors present the principal ideas, techniques and results of the field, together with a guide to the primary research literature (carefully edited to ensure a uniform coverage and style, with extensive cross-references). Along with a summary of key ideas, techniques, and results, many chapters offer diagrams of apparatus, graphs, and tables of data. From atomic spectroscopy to applications in comets, one finds contributions from over 100 authors, all leaders in their respective disciplines. Substantially updated and expanded since the original 1996 edition, it now contains several entirely new chapters covering current areas of great research interest that barely existed in 1996, such as Bose-Einstein condensation, quantum information, and cosmological variations of the fundamental constants. A fully-searchable CD- ROM version of the contents accompanies the handbook.