EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Proceedings of the Fifth International Conference Multiscale Materials Modeling MMM2010

Download or read book Proceedings of the Fifth International Conference Multiscale Materials Modeling MMM2010 written by Peter Gumbsch and published by . This book was released on 2010 with total page 952 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale modeling of materials promotes the development of predictive materials research tools to understand the structure and properties of materials at all scales. The field strives to use these predictive tools to design and process materials with novel properties. Multiscale modeling of materials transcends the boundaries between materials science, mechanics, and physics and chemistry of materials and is creating opportunities for making materials predictions with unprecedented levels of rigor and accuracy.

Book Micromechanics

    Book Details:
  • Author : E. van der Giessen
  • Publisher :
  • Release : 2011
  • ISBN :
  • Pages : pages

Download or read book Micromechanics written by E. van der Giessen and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceedings of Second International Conference on Multiscale Materials Modeling

Download or read book Proceedings of Second International Conference on Multiscale Materials Modeling written by Nasr M. Ghoniem and published by . This book was released on 2004 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceedings of MMM III  Third International Conference Multiscale Materials Modeling

Download or read book Proceedings of MMM III Third International Conference Multiscale Materials Modeling written by Peter Gumbsch and published by . This book was released on 2006 with total page 992 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational modeling of materials behavior by multiscale materials modeling (MMM) approaches is becoming a reliable tool to underpin scientific investigations and to complement traditional theoretical and experimental approaches of component assessment. At transitional (or microstructure) scales continuum approaches begin to break down and atomistic methods reach inherent limitations in time and length scale. Transitional theoretical frameworks and modeling techniques are developed to bridge the gap between the different length scales. Industrial success in high technology fields relies on the possibility to specifically engineer materials and products with improved performance. The success factor is the ability to make these material related developments timely at relatively low-costs. This demands not only the rapid development of new or improved processing techniques but also better understanding and control of material chemistry, processing, structure, performance, durability, and their relationships. This scenario usually involves multiple length (space) & time scales and multiple processing & performance stages, which are usually only accessible via multi-scale / multi-stage modeling or simulation. In high-payoff, high-risk technologies such as the design of large structures in the aerospace and nuclear industries, the effects of aging and environment on failure mechanisms cannot be left to conservative approaches. Increasing efforts are now focused on developing MMM approaches to develop new material systems (components and devices). Appropriate validation experiments are crucial to verify that the models predict the correct behavior at each length scale. Thus, one of the advantages of these MMM approaches is that, at each scale, physically meaningful parameters are predicted and used in models for subsequent scales, avoiding the use of empiricism and fitting parameters. Recent interest in nanotechnology is challenging the scientific community to design nanometer to micrometer size devices for applications in new generations of computers, electronics, photonics or drug delivery systems. These new application areas of multiscale materials modeling require novel and sophisticated science-based approaches for design and performance evaluation. Theory and modeling are playing an increasing role to reduce development costs and manufacturing times. With the sustained progress in computational power and MMM methodologies, new materials and new functionalities are increasingly more likely to be discovered by MMM approaches than by traditional trial and error approach. This is part of a paradigm shift in modeling, away from reproducing known properties of known materials towards simulating the behavior of hypothetical composites as a forerunner to finding real materials with these novel properties. The MMM 2006 conference provides an international forum for the scientific advances of multiscale modeling methodologies and their applications.

Book Uncertainty Quantification in Multiscale Materials Modeling

Download or read book Uncertainty Quantification in Multiscale Materials Modeling written by Yan Wang and published by Woodhead Publishing. This book was released on 2020-03-10 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales. - Synthesizes available UQ methods for materials modeling - Provides practical tools and examples for problem solving in modeling material behavior across various length scales - Demonstrates UQ in density functional theory, molecular dynamics, kinetic Monte Carlo, phase field, finite element method, multiscale modeling, and to support decision making in materials design - Covers quantum, atomistic, mesoscale, and engineering structure-level modeling and simulation

Book Multiscale Materials Modeling

    Book Details:
  • Author : Siegfried Schmauder
  • Publisher : Walter de Gruyter GmbH & Co KG
  • Release : 2016-08-22
  • ISBN : 3110412519
  • Pages : 409 pages

Download or read book Multiscale Materials Modeling written by Siegfried Schmauder and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-08-22 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents current spatial and temporal multiscaling approaches of materials modeling. Recent results demonstrate the deduction of macroscopic properties at the device and component level by simulating structures and materials sequentially on atomic, micro- and mesostructural scales. The book covers precipitation strengthening and fracture processes in metallic alloys, materials that exhibit ferroelectric and magnetoelectric properties as well as biological, metal-ceramic and polymer composites. The progress which has been achieved documents the current state of art in multiscale materials modelling (MMM) on the route to full multi-scaling. Contents: Part I: Multi-time-scale and multi-length-scale simulations of precipitation and strengthening effects Linking nanoscale and macroscale Multiscale simulations on the coarsening of Cu-rich precipitates in α-Fe using kinetic Monte Carlo, Molecular Dynamics, and Phase-Field simulations Multiscale modeling predictions of age hardening curves in Al-Cu alloys Kinetic Monte Carlo modeling of shear-coupled motion of grain boundaries Product Properties of a two-phase magneto-electric composite Part II: Multiscale simulations of plastic deformation and fracture Niobium/alumina bicrystal interface fracture Atomistically informed crystal plasticity model for body-centred cubic iron FE2AT ・ finite element informed atomistic simulations Multiscale fatigue crack growth modeling for welded stiffened panels Molecular dynamics study on low temperature brittleness in tungsten single crystals Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructure Multiscale simulation of the mechanical behavior of nanoparticle-modified polyamide composites Part III: Multiscale simulations of biological and bio-inspired materials, bio-sensors and composites Multiscale Modeling of Nano-Biosensors Finite strain compressive behaviour of CNT/epoxy nanocomposites Peptide・zinc oxide interaction

Book Symposium on Multiscale Materials Modeling

Download or read book Symposium on Multiscale Materials Modeling written by and published by . This book was released on 1999 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Selected Papers from the 4th International Conference on Multiscale Materials Modeling

Download or read book Selected Papers from the 4th International Conference on Multiscale Materials Modeling written by Simon R. Philpot and published by . This book was released on 2010 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Multiscale Materials Modelling

Download or read book Multiscale Materials Modelling written by Z. X. Guo and published by Elsevier. This book was released on 2007-05-31 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale materials modelling offers an integrated approach to modelling material behaviour across a range of scales from the electronic, atomic and microstructural up to the component level. As a result, it provides valuable new insights into complex structures and their properties, opening the way to develop new, multi-functional materials together with improved process and product designs. Multiscale materials modelling summarises some of the key techniques and their applications.The various chapters cover the spectrum of scales in modelling methodologies, including electronic structure calculations, mesoscale and continuum modelling. The book covers such themes as dislocation behaviour and plasticity as well as the modelling of structural materials such as metals, polymers and ceramics. With its distinguished editor and international team of contributors, Multiscale materials modelling is a valuable reference for both the modelling community and those in industry wanting to know more about how multiscale materials modelling can help optimise product and process design. - Reviews the principles and applications of mult-scale materials modelling - Covers themes such as dislocation behaviour and plasticity and the modelling of structural materials - Examines the spectrum of scales in modelling methodologies, including electronic structure calculations, mesoscale and continuum modelling

Book Proceedings of Multiscale Materials Modeling

Download or read book Proceedings of Multiscale Materials Modeling written by and published by . This book was released on 2008 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceeedings of the Multiscale Materials Modeling 2012 Conference

Download or read book Proceeedings of the Multiscale Materials Modeling 2012 Conference written by R. Hariharaputran and published by . This book was released on 2013 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Comprehensive Nuclear Materials

Download or read book Comprehensive Nuclear Materials written by and published by Elsevier. This book was released on 2020-07-22 with total page 4871 pages. Available in PDF, EPUB and Kindle. Book excerpt: Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field

Book Phase Transformations in Metals and Alloys

Download or read book Phase Transformations in Metals and Alloys written by David A. Porter and published by . This book was released on 1981 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Granular Gases

    Book Details:
  • Author : Thorsten Pöschel
  • Publisher : Springer Science & Business Media
  • Release : 2001-02-27
  • ISBN : 3540414584
  • Pages : 454 pages

Download or read book Granular Gases written by Thorsten Pöschel and published by Springer Science & Business Media. This book was released on 2001-02-27 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Granular Gases" are diluted many-particle systems in which the mean free path of the particles is much larger than the typical particle size, and where particle collisions occur dissipatively. The dissipation of kinetic energy can lead to effects such as the formation of clusters, anomalous diffusion and characteristic shock waves to name but a few. The book is organized as follows: Part I comprises the rigorous theoretical results for the dilute limit. The detailed properties of binary collisions are described in Part II. Part III contains experimental investigations of granular gases. Large-scale behaviour as found in astrophysical systems is discussed in Part IV. Part V, finally, deals with possible generalizations for dense granular systems.

Book Handbook of Materials Modeling

Download or read book Handbook of Materials Modeling written by Sidney Yip and published by Springer Science & Business Media. This book was released on 2007-11-17 with total page 2903 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.

Book Ferroic Functional Materials

Download or read book Ferroic Functional Materials written by Jörg Schröder and published by Springer. This book was released on 2017-11-23 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book covers experiments and theory in the fields of ferroelectrics, ferromagnets, ferroelastics, and multiferroics. Topics include experimental preparation and characterization of magnetoelectric multiferroics, the modeling of ferroelectric and ferromagnetic materials, the formation of ferroic microstructures and their continuum-mechanical modeling, computational homogenization, and the algorithmic treatment in the framework of numerical solution strategies.