EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Molecular Simulation Studies on Thermophysical Properties

Download or read book Molecular Simulation Studies on Thermophysical Properties written by Gabriele Raabe and published by Springer. This book was released on 2017-02-17 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the fundamentals of molecular simulation, starting with the basics of statistical mechanics and providing introductions to Monte Carlo and molecular dynamics simulation techniques. It also offers an overview of force-field models for molecular simulations and their parameterization, with a discussion of specific aspects. The book then summarizes the available know-how for analyzing molecular simulation outputs to derive information on thermophysical and structural properties. Both the force-field modeling and the analysis of simulation outputs are illustrated by various examples. Simulation studies on recently introduced HFO compounds as working fluids for different technical applications demonstrate the value of molecular simulations in providing predictions for poorly understood compounds and gaining a molecular-level understanding of their properties. This book will prove a valuable resource to researchers and students alike.

Book Thermophysical Properties of Fluids

Download or read book Thermophysical Properties of Fluids written by Marc J. Assael and published by World Scientific. This book was released on 1996 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with the prediction of thermodynamic and transport properties of gases and liquids. The prediction of such properties is essential for the solution of many problems encountered in chemical and process engineering as well as in other areas of science and technology. The book aims to present the best of those modern methods which are capable of practical application. It begins with basic scientific principles and formal results which are subsequently developed into practical methods of prediction. Numerous examples, supported by a suite of computer programmes, illustrate applications of the methods. The book is aimed primarily at the student market (for both undergraduate and taught postgraduate courses) but it will also be useful for those engaged in research and for chemical and process engineering professionals.

Book Molecular Simulation of Fluids

Download or read book Molecular Simulation of Fluids written by Richard J. Sadus and published by Elsevier. This book was released on 2023-09-16 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular simulation allows researchers unique insight into the structures and interactions at play in fluids. Since publication of the first edition of Molecular Simulation of Fluids, novel developments in theory, algorithms and computer hardware have generated enormous growth in simulation capabilities. This 2nd edition has been fully updated and expanded to highlight this recent progress, encompassing both Monte Carlo and molecular dynamic techniques, and providing details of theory, algorithms and both serial and parallel implementations. Beginning with a clear introduction and review of theoretical foundations, the book goes on to explore intermolecular potentials before discussing the calculation of molecular interactions in more detail. Monte Carlo simulation and integrators for molecular dynamics are then discussed further, followed by non-equilibrium molecular dynamics and molecular simulation of ensembles and phase equilibria. The use of object-orientation is examined in detail, with working examples coded in C++. Finally, practical parallel simulation algorithms are discussed using both MPI and GPUs, with the latter coded in CUDA. Drawing on the extensive experience of its expert author, Molecular Simulation of Fluids: Theory, Algorithms, Object-Orientation, and Parallel Computing 2nd Edition is a practical, accessible guide to this complex topic for all those currently using, or interested in using, molecular simulation to study fluids. Fully updated and revised to reflect advances in the field, including new chapters on intermolecular potentials and parallel algorithms Covers the application of both MPI and GPU programming to molecular simulation Covers a wide range of simulation topics using both Monte Carlo and molecular dynamics approaches Provides access to downloadable simulation code, including GPU code using CUDA, to encourage practice and support learning

Book Theoretical Treatment of the Thermophysical Properties of Fluids Containing Chain like Molecules

Download or read book Theoretical Treatment of the Thermophysical Properties of Fluids Containing Chain like Molecules written by and published by . This book was released on 2008 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research program was designed to enhance our understanding of the behavior of fluids and fluid mixtures containing chain-like molecules. The original objective was to explain and predict the experimentally observed thermophysical properties, including phase equilibria and dynamics, of systems containing long flexible molecules ranging in length from alkanes to polymers. Over the years the objectives were expanded to include the treatment of molecules that were not chain-like. Molecular dynamics and Monte Carlo computer simulations were used to investigate how variations in molecular size, shape and architecture influence the types of phase equilibria, thermodynamic properties, structure and surface interactions that are observed experimentally. The molecular insights and theories resulting from this program could eventually serve as the foundation upon which to build correlations of the properties of fluids that are both directly and indirectly related to the Nation's energy resources including: petroleum, natural gas, and polymer solutions, melts, blends, and materials.

Book Transport Properties of Fluids

Download or read book Transport Properties of Fluids written by Jürgen Millat and published by Cambridge University Press. This book was released on 1996-06-13 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most reliable methods available for evaluating the transport properties of pure gases and fluid mixtures.

Book Molecular Modeling and Simulation of Real Fluids for Applications in Process Engineering

Download or read book Molecular Modeling and Simulation of Real Fluids for Applications in Process Engineering written by Yow-lin Huang and published by . This book was released on 2010 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Perturbation Theories for the Thermodynamic Properties of Fluids and Solids

Download or read book Perturbation Theories for the Thermodynamic Properties of Fluids and Solids written by J. R. Solana and published by CRC Press. This book was released on 2013-03-22 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perturbation theory forms an important basis for predicting the thermodynamic characteristics of real fluids and solids. This book provides a comprehensive review of current perturbation theories-as well as integral equation theories and density functional theories-for the equilibrium thermodynamic and structural properties of classical systems. Emphasizing practical applications, the book avoids complex theoretical derivations as much as possible. Appropriate for experienced researchers as well as postgraduate students, the text presents a wide-ranging yet detailed view and provides a useful guide to the application of the theories described.

Book Applications of Molecular Simulation in the Oil and Gas Industry

Download or read book Applications of Molecular Simulation in the Oil and Gas Industry written by Philippe Ungerer and published by Editions TECHNIP. This book was released on 2005 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular simulation is an emerging technology for determining the properties of many systems that are of interest to the oil and gas industry, and more generally to the chemical industry. Based on a universally accepted theoretical background, molecular simulation accounts for the precise structure of molecules in evaluating their interactions. Taking advantage of the availability of powerful computers at moderate cost, molecular simulation is now providing reliable predictions in many cases where classical methods (such as equations of state or group contribution methods) have limited prediction capabilities. This is particularly useful for designing processes involving toxic components, extreme pressure conditions, or adsorption selectivity in microporous adsorbents. Molecular simulation moreover provides a detailed understanding of system behaviour. As illustrated by their award from the American Institute of Chemical Engineers for the best overall performance at the Fluid Simulation Challenge 2004, the authors are recognized experts in Monte Carlo simulation techniques, which they use to address equilibrium properties. This book presents these techniques in sufficient detail for readers to understand how simulation works, and describes many applications for industrially relevant problems. The book is primarily dedicated to chemical engineers who are not yet conversant with molecular simulation techniques. In addition, specialists in molecular simulation will be interested in the large scope of applications presented (including fluid properties, fluid phase equilibria, adsorption in zeolites, etc.).Contents: 1. Introduction. 2. Basics of Molecular Simulation. 3. Fluid Phase Equilibria and Fluid Properties. 4. Adsorption. 5. Conclusion and Perspectives. Appendix

Book Theory of Molecular Fluids

    Book Details:
  • Author : Christopher G. Gray
  • Publisher : Oxford University Press
  • Release : 2011-10-13
  • ISBN : 0191004871
  • Pages : 785 pages

Download or read book Theory of Molecular Fluids written by Christopher G. Gray and published by Oxford University Press. This book was released on 2011-10-13 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: Existing texts on the statistical mechanics of liquids treat only spherical molecules. However, nearly all fluids of practical interest are composed of non-spherical molecules that are often dipolar or exhibit other kinds of electrostatic forces. This book describes the statistical mechanical theory of fluids of non-spherical molecules and its application to the calculation of physical properties, and is a sequel to Theory of Molecular Fluids. Volume 1: Fundamentals by C.G. Gray and K.E. Gubbins. The emphasis is on the new phenomena that arise due to the non-spherical nature of the intermolecular forces, such as new phase transitions, structural features and dielectric effects. It contains chapters on the thermodynamic properties of pure and mixed fluids, surface properties, X-ray and neutron diffraction structure factors, dielectric properties and spectroscopic properties. The book is aimed at beginning graduate students and research workers in chemistry, physics, materials science and engineering.

Book Thermodynamic and Transport Properties of Molecular Fluids

Download or read book Thermodynamic and Transport Properties of Molecular Fluids written by Shuwen Yue and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular simulation predictions of thermodynamic and transport properties of fluids such as water, electrolyte solutions, and CO2 are of considerable interest to energy, environmental, and industrial applications. The reliability and accuracy of these predictions are contingent on the molecular models used in simulation. Here, we investigate the predictive capabilities of several classes of molecular models, from simple empirical force fields to high dimensional machine learning (ML) models, in order to provide insight on the necessary physics for representing complex fluids.We first evaluate empirically derived polarizable, non-polarizable, and scaled charge models in representing the dynamic properties of aqueous electrolyte solutions. While polarizability improves structural and dynamic predictions, there re- main insufficient physics for achieving quantitative accuracy. The advent of ML frameworks applied to molecular models has made way for far more descriptive representations of water and electrolyte solutions, combining ab initio levels of accuracy with classical level computational costs. However, the lack of explicit long-range interactions in ML models remains a fundamental caveat. We investigate the consequences of this localized representation for various thermodynamic regimes of water and electrolyte solutions. We then construct ML models based on the SCAN DFT functional for several species of alkali halide electrolyte solutions which give thermo- dynamic properties with excellent agreement with experiments and dynamic properties which significantly improve upon that of conventional empirical force fields. Finally, we constructed many-body polarizable models of CO2 and assessed the influence of functional form flexibility and training set quality on bulk thermodynamic properties.The results in this thesis illustrate the limitations and scope by which several classes of molecular models, from empirical force fields to ML models, can be utilized reliably. Additionally, new ML models of electrolyte solutions and CO2 constructed in this work provide promising avenues toward studying complex fluid behavior from first principles perspectives.

Book Predicting the Thermophysical Properties of Molecules with Anisotropic Interaction and Structure Using the Statistical Associating Fluid Theory

Download or read book Predicting the Thermophysical Properties of Molecules with Anisotropic Interaction and Structure Using the Statistical Associating Fluid Theory written by Gaurav Das and published by . This book was released on 2015 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Thermodynamics of Fluid Phase Equilibria

Download or read book Molecular Thermodynamics of Fluid Phase Equilibria written by John M. Prausnitz and published by Pearson Education. This book was released on 1998-10-22 with total page 1149 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classic guide to mixtures, completely updated with new models, theories, examples, and data. Efficient separation operations and many other chemical processes depend upon a thorough understanding of the properties of gaseous and liquid mixtures. Molecular Thermodynamics of Fluid-Phase Equilibria, Third Edition is a systematic, practical guide to interpreting, correlating, and predicting thermodynamic properties used in mixture-related phase-equilibrium calculations. Completely updated, this edition reflects the growing maturity of techniques grounded in applied statistical thermodynamics and molecular simulation, while relying on classical thermodynamics, molecular physics, and physical chemistry wherever these fields offer superior solutions. Detailed new coverage includes: Techniques for improving separation processes and making them more environmentally friendly. Theoretical concepts enabling the description and interpretation of solution properties. New models, notably the lattice-fluid and statistical associated-fluid theories. Polymer solutions, including gas-polymer equilibria, polymer blends, membranes, and gels. Electrolyte solutions, including semi-empirical models for solutions containing salts or volatile electrolytes. Coverage also includes: fundamentals of classical thermodynamics of phase equilibria; thermodynamic properties from volumetric data; intermolecular forces; fugacities in gas and liquid mixtures; solubilities of gases and solids in liquids; high-pressure phase equilibria; virial coefficients for quantum gases; and much more. Throughout, Molecular Thermodynamics of Fluid-Phase Equilibria strikes a perfect balance between empirical techniques and theory, and is replete with useful examples and experimental data. More than ever, it is the essential resource for engineers, chemists, and other professionals working with mixtures and related processes.

Book Thermophysical Properties of Complex Materials

Download or read book Thermophysical Properties of Complex Materials written by Aamir Shahzad and published by BoD – Books on Demand. This book was released on 2020-03-25 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book assists in the exchange of research and progress outcomes concerned with the latest issues in thermophysical properties (TPPs) of complex liquids research, development, and production. Topics cover the control of transport properties of metallic alloys, thermal analysis of complex plasmas and instabilities in plasma devices, thermophysical properties at nanolevel, theoretical background of viscosities of hydrocarbons at varying temperature and pressure ranges, molecular modeling, and experimental investigations based on nanofluids and ionic conduction in solid-state electrolytes for thermodynamic data. This book enables global researchers to tackle the challenges that continue to generate cost-effective TPPs and the latest understanding in the development of complex materials and the collaboration of modern thermophysical generating technologies. Moreover, it provides a platform for different regional authors to exchange scientific knowledge and generate enthusiasm for science and technology.

Book Microflows and Nanoflows

    Book Details:
  • Author : George Karniadakis
  • Publisher : Springer Science & Business Media
  • Release : 2006-02-09
  • ISBN : 0387286764
  • Pages : 824 pages

Download or read book Microflows and Nanoflows written by George Karniadakis and published by Springer Science & Business Media. This book was released on 2006-02-09 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Subject area has witnessed explosive growth during the last decade and the technology is progressing at an astronomical rate. Previous edition was first to focus exclusively on flow physics within microdevices. It sold over 900 copies in North America since 11/01. New edition is 40 percent longer, with four new chapters on recent topics including Nanofluidics.

Book Molecular Modeling at Interfaces

Download or read book Molecular Modeling at Interfaces written by and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular simulation is a very powerful technique that allows us to predict thermodynamic and transport properties of bulk and confined phases, as well as phase equilibria and interfacial properties. These properties are often crucial to the design of chemical and related industrial processes. Molecular simulation can predict these properties over a wide range of conditions, in contrast with experiments, which at extreme conditions (e.g., high temperature and/or high pressure) are often very difficult and in some cases dangerous. Further more, semi-empirical and empirical engineering models can frequently only be used for the specific systems to which they are fitted - that is, they are interpolative rather than predictive. Therefore molecular modeling methods, including simulation, can play a very useful role in the design of new processes, as well as the prediction of new phenomena. In this thesis, we applied molecular simulation methods to four separate problems: vapor-liquid equilibrium for a polarizable model of water, liquid-liquid interfacial properties, phase equilibrium in confined systems, and mechanical properties of nano scale systems. The first three problems imply the study of phases in equilibrium under different conditions. The most simple is the vapor-liquid equilibrium of a single component. Thermophysical properties such as coexistence densities, vapor pressure, surface tension, and interfacial thickness were obtained for a polarizable model of water and compared with other simpler potential models and experimental results. Using the same methodology, the interfacial properties of binary and ternary mixtures with polar and non-polar fluids exhibiting liquid-liquid equilibrium were studied. The dependence of the interfacial properties with increasing molecular size of one compound was studied. For ternary mixtures, the presence of a surfactant molecule was studied at different concentrations of the surfactant. Phase equilibria inside single carbon nanotubes were studied for single and binary aqueous systems, the coexistence liquid densities were calculated and compared with results of water in hydrophobic nanopores, and in the bulk. The phase equilibria behavior was studied indirectly in terms of the pressure inside the nanotube. Molecular simulation is a very suitable tool to study mechanical properties of systems at the nanoscale. The interlayer friction forces in double-wall carbonnanotubes were studied for systems with axial length up to 100 nm. The oscillatory behavior resulting when the inner tube is pulled out and released was studied as a function of nanotube length, temperature, and internal conformation. The latter enabled the study of systems with different degree of commensurability.

Book Theoretical Treatment of the Thermophysical Properties of Fluids Containing Chain like Molecules  Final Technical Report  June 1  1994  May 31  1997

Download or read book Theoretical Treatment of the Thermophysical Properties of Fluids Containing Chain like Molecules Final Technical Report June 1 1994 May 31 1997 written by and published by . This book was released on 1997 with total page 23 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author has been engaged in a research program aimed at enhancing the understanding of the thermo-physical properties of fluids containing long, flexible, chain-like molecules. She has been working on four main fronts: (1) the development of an equation of state that is capable of predicting the experimentally observed thermodynamic properties, including phase equilibria, of fluids containing chain-like molecules ranging in length from alkanes to polymers; (2) computer simulation studies of the transport properties of chain fluids, with special focus on the role played by entanglements in the dynamical properties of polymer melts, (3) computer simulation studies and theoretical treatment of the static and dynamic properties of polymer networks and gels, and (4) computer simulation studies of the permeation of penetrants in polymer membranes. The theories resulting from this research could eventually serve as the foundation upon which to build correlations of petroleum and natural gas, as well as of polymer solutions, melts, blends, networks, and gels. In this progress report the author summarizes work accomplished under DOE sponsorship of the period December 1993 to December 1996. In section 2, she summarizes the stated objectives of their previous (1993) proposal, indicating which work has been accomplished, which work is continuing, and which work has been discontinued. In section 3, she summarizes the three new objectives that were added after December 1993. In section 4, she provides a detailed description of the work accomplished, omitting those descriptions that appear in the accompanying proposal. In section 5, she describes their human resource development efforts. Finally, in section 6 she lists the publications resulting from this work. Abstracts of these papers are presented in the appendix.