Download or read book Handbook of Economic Forecasting written by Graham Elliott and published by Elsevier. This book was released on 2013-08-23 with total page 667 pages. Available in PDF, EPUB and Kindle. Book excerpt: The highly prized ability to make financial plans with some certainty about the future comes from the core fields of economics. In recent years the availability of more data, analytical tools of greater precision, and ex post studies of business decisions have increased demand for information about economic forecasting. Volumes 2A and 2B, which follows Nobel laureate Clive Granger's Volume 1 (2006), concentrate on two major subjects. Volume 2A covers innovations in methodologies, specifically macroforecasting and forecasting financial variables. Volume 2B investigates commercial applications, with sections on forecasters' objectives and methodologies. Experts provide surveys of a large range of literature scattered across applied and theoretical statistics journals as well as econometrics and empirical economics journals. The Handbook of Economic Forecasting Volumes 2A and 2B provide a unique compilation of chapters giving a coherent overview of forecasting theory and applications in one place and with up-to-date accounts of all major conceptual issues. - Focuses on innovation in economic forecasting via industry applications - Presents coherent summaries of subjects in economic forecasting that stretch from methodologies to applications - Makes details about economic forecasting accessible to scholars in fields outside economics
Download or read book On Market Timing and Investment Performance Part II Statistical Procedures for Evaluating Forecasting Skills written by Roy Henriksson and published by . This book was released on 2023-07-18 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book DIY Financial Advisor written by Wesley R. Gray and published by John Wiley & Sons. This book was released on 2015-08-31 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: DIY Financial Advisor: A Simple Solution to Build and Protect Your Wealth DIY Financial Advisor is a synopsis of our research findings developed while serving as a consultant and asset manager for family offices. By way of background, a family office is a company, or group of people, who manage the wealth a family has gained over generations. The term 'family office' has an element of cachet, and even mystique, because it is usually associated with the mega-wealthy. However, practically speaking, virtually any family that manages its investments—independent of the size of the investment pool—could be considered a family office. The difference is mainly semantic. DIY Financial Advisor outlines a step-by-step process through which investors can take control of their hard-earned wealth and manage their own family office. Our research indicates that what matters in investing are minimizing psychology traps and managing fees and taxes. These simple concepts apply to all families, not just the ultra-wealthy. But can—or should—we be managing our own wealth? Our natural inclination is to succumb to the challenge of portfolio management and let an 'expert' deal with the problem. For a variety of reasons we discuss in this book, we should resist the gut reaction to hire experts. We suggest that investors maintain direct control, or at least a thorough understanding, of how their hard-earned wealth is managed. Our book is meant to be an educational journey that slowly builds confidence in one's own ability to manage a portfolio. We end our book with a potential solution that could be applicable to a wide-variety of investors, from the ultra-high net worth to middle class individuals, all of whom are focused on similar goals of preserving and growing their capital over time. DIY Financial Advisor is a unique resource. This book is the only comprehensive guide to implementing simple quantitative models that can beat the experts. And it comes at the perfect time, as the investment industry is undergoing a significant shift due in part to the use of automated investment strategies that do not require a financial advisor's involvement. DIY Financial Advisor is an essential text that guides you in making your money work for you—not for someone else!
Download or read book Machine Learning for Asset Management written by Emmanuel Jurczenko and published by John Wiley & Sons. This book was released on 2020-10-06 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edited volume consists of a collection of original articles written by leading financial economists and industry experts in the area of machine learning for asset management. The chapters introduce the reader to some of the latest research developments in the area of equity, multi-asset and factor investing. Each chapter deals with new methods for return and risk forecasting, stock selection, portfolio construction, performance attribution and transaction costs modeling. This volume will be of great help to portfolio managers, asset owners and consultants, as well as academics and students who want to improve their knowledge of machine learning in asset management.
Download or read book Recent Applications of Financial Risk Modelling and Portfolio Management written by Škrinjari?, Tihana and published by IGI Global. This book was released on 2020-09-25 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: In today’s financial market, portfolio and risk management are facing an array of challenges. This is due to increasing levels of knowledge and data that are being made available that have caused a multitude of different investment models to be explored and implemented. Professionals and researchers in this field are in need of up-to-date research that analyzes these contemporary models of practice and keeps pace with the advancements being made within financial risk modelling and portfolio control. Recent Applications of Financial Risk Modelling and Portfolio Management is a pivotal reference source that provides vital research on the use of modern data analysis as well as quantitative methods for developing successful portfolio and risk management techniques. While highlighting topics such as credit scoring, investment strategies, and budgeting, this publication explores diverse models for achieving investment goals as well as improving upon traditional financial modelling methods. This book is ideally designed for researchers, financial analysts, executives, practitioners, policymakers, academicians, and students seeking current research on contemporary risk management strategies in the financial sector.
Download or read book Empirical Asset Pricing written by Wayne Ferson and published by MIT Press. This book was released on 2019-03-12 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.
Download or read book Knowledge Based Systems written by Rajendra Akerkar and published by Jones & Bartlett Publishers. This book was released on 2009-08-25 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: A knowledge-based system (KBS) is a system that uses artificial intelligence techniques in problem-solving processes to support human decision-making, learning, and action. Ideal for advanced-undergraduate and graduate students, as well as business professionals, this text is designed to help users develop an appreciation of KBS and their architecture and understand a broad variety of knowledge-based techniques for decision support and planning. It assumes basic computer science skills and a math background that includes set theory, relations, elementary probability, and introductory concepts of artificial intelligence. Each of the 12 chapters is designed to be modular, providing instructors with the flexibility to model the book to their own course needs. Exercises are incorporated throughout the text to highlight certain aspects of the material presented and to simulate thought and discussion. A comprehensive text and resource, Knowledge-Based Systems provides access to the most current information in KBS and new artificial intelligences, as well as neural networks, fuzzy logic, genetic algorithms, and soft systems.
Download or read book Handbook of Financial Econometrics written by Yacine Ait-Sahalia and published by Elsevier. This book was released on 2009-10-19 with total page 809 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume. - Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity - Contributors include Nobel Laureate Robert Engle and leading econometricians - Offers a clarity of method and explanation unavailable in other financial econometrics collections
Download or read book The Econometrics of Financial Markets written by John Y. Campbell and published by Princeton University Press. This book was released on 2012-06-28 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past twenty years have seen an extraordinary growth in the use of quantitative methods in financial markets. Finance professionals now routinely use sophisticated statistical techniques in portfolio management, proprietary trading, risk management, financial consulting, and securities regulation. This graduate-level textbook is intended for PhD students, advanced MBA students, and industry professionals interested in the econometrics of financial modeling. The book covers the entire spectrum of empirical finance, including: the predictability of asset returns, tests of the Random Walk Hypothesis, the microstructure of securities markets, event analysis, the Capital Asset Pricing Model and the Arbitrage Pricing Theory, the term structure of interest rates, dynamic models of economic equilibrium, and nonlinear financial models such as ARCH, neural networks, statistical fractals, and chaos theory. Each chapter develops statistical techniques within the context of a particular financial application. This exciting new text contains a unique and accessible combination of theory and practice, bringing state-of-the-art statistical techniques to the forefront of financial applications. Each chapter also includes a discussion of recent empirical evidence, for example, the rejection of the Random Walk Hypothesis, as well as problems designed to help readers incorporate what they have read into their own applications.
Download or read book Data Analysis Machine Learning and Applications written by Christine Preisach and published by Springer Science & Business Media. This book was released on 2008-04-13 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data analysis and machine learning are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medical science, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and applications presented during the 31st Annual Conference of the German Classification Society (Gesellschaft für Klassifikation - GfKl). The conference was held at the Albert-Ludwigs-University in Freiburg, Germany, in March 2007.
Download or read book Strategic Asset Allocation written by John Y. Campbell and published by OUP Oxford. This book was released on 2002-01-03 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Academic finance has had a remarkable impact on many financial services. Yet long-term investors have received curiously little guidance from academic financial economists. Mean-variance analysis, developed almost fifty years ago, has provided a basic paradigm for portfolio choice. This approach usefully emphasizes the ability of diversification to reduce risk, but it ignores several critically important factors. Most notably, the analysis is static; it assumes that investors care only about risks to wealth one period ahead. However, many investors—-both individuals and institutions such as charitable foundations or universities—-seek to finance a stream of consumption over a long lifetime. In addition, mean-variance analysis treats financial wealth in isolation from income. Long-term investors typically receive a stream of income and use it, along with financial wealth, to support their consumption. At the theoretical level, it is well understood that the solution to a long-term portfolio choice problem can be very different from the solution to a short-term problem. Long-term investors care about intertemporal shocks to investment opportunities and labor income as well as shocks to wealth itself, and they may use financial assets to hedge their intertemporal risks. This should be important in practice because there is a great deal of empirical evidence that investment opportunities—-both interest rates and risk premia on bonds and stocks—-vary through time. Yet this insight has had little influence on investment practice because it is hard to solve for optimal portfolios in intertemporal models. This book seeks to develop the intertemporal approach into an empirical paradigm that can compete with the standard mean-variance analysis. The book shows that long-term inflation-indexed bonds are the riskless asset for long-term investors, it explains the conditions under which stocks are safer assets for long-term than for short-term investors, and it shows how labor income influences portfolio choice. These results shed new light on the rules of thumb used by financial planners. The book explains recent advances in both analytical and numerical methods, and shows how they can be used to understand the portfolio choice problems of long-term investors.
Download or read book Predicting the Markets of Tomorrow written by James P. O'Shaughnessy and published by Penguin. This book was released on 2006-03-02 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique and timely new wealth-building strategy from a legendary investment guru In his national bestsellers How to Retire Rich and What Works on Wall Street, portfolio manager extraordinaire James P. O’Shaughnessy offered investors practical advice based on rigorous quantitative analysis—advice that has consistently beaten the market. But in a recent analysis of market data, O’Shaughnessy uncovered some astonishing trends not discussed in his previous books. The Markets of Tomorrow explains O’Shaughnessy’s new research and tells ordinary investors what they must do now to revamp their portfolios. According to O’Shaughnessy, the year 2000 marked the end of a twenty-year cycle that was dominated by the stocks of larger, fastergrowing companies like those in the S&P 500. In the new cycle, the stocks of small and midsize companies are the ones that will outperform the market, along with large company value stocks and intermediate term bonds. O’Shaughnessy describes the number crunching behind his analysis and then shows individual investors exactly how to select the right mix of investments and pick top-performing small and midcap stocks. The Markets of Tomorrow is a loud and clear call to action for every investor who doesn’t want to be left behind.
Download or read book A Companion to Economic Forecasting written by Michael P. Clements and published by John Wiley & Sons. This book was released on 2008-04-15 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Companion to Economic Forecasting provides an accessible and comprehensive account of recent developments in economic forecasting. Each of the chapters has been specially written by an expert in the field, bringing together in a single volume a range of contrasting approaches and views. Uniquely surveying forecasting in a single volume, the Companion provides a comprehensive account of the leading approaches and modeling strategies that are routinely employed.
Download or read book Advances in Financial Machine Learning written by Marcos Lopez de Prado and published by John Wiley & Sons. This book was released on 2018-01-23 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
Download or read book Applications and Innovations in Intelligent Systems XIII written by Ann Macintosh and published by Springer Science & Business Media. This book was released on 2007-10-27 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers in this volume are the refereed application papers presented at AI-2005, the Twenty-fifth SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, held in Cambridge in December 2005. The papers present new and innovative developments in the field, divided into sections on Synthesis and Prediction, Scheduling and Search, Diagnosis and Monitoring, Classification and Design, and Analysis and Evaluation. This is the thirteenth volume in the Applications and Innovations series. The series serves as a key reference on the use of AI Technology to enable organisations to solve complex problems and gain significant business benefits. The Technical Stream papers are published as a companion volume under the title Research and Development in Intelligent Systems XXII.
Download or read book Kernel Adaptive Filtering written by Weifeng Liu and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Online learning from a signal processing perspective There is increased interest in kernel learning algorithms in neural networks and a growing need for nonlinear adaptive algorithms in advanced signal processing, communications, and controls. Kernel Adaptive Filtering is the first book to present a comprehensive, unifying introduction to online learning algorithms in reproducing kernel Hilbert spaces. Based on research being conducted in the Computational Neuro-Engineering Laboratory at the University of Florida and in the Cognitive Systems Laboratory at McMaster University, Ontario, Canada, this unique resource elevates the adaptive filtering theory to a new level, presenting a new design methodology of nonlinear adaptive filters. Covers the kernel least mean squares algorithm, kernel affine projection algorithms, the kernel recursive least squares algorithm, the theory of Gaussian process regression, and the extended kernel recursive least squares algorithm Presents a powerful model-selection method called maximum marginal likelihood Addresses the principal bottleneck of kernel adaptive filters—their growing structure Features twelve computer-oriented experiments to reinforce the concepts, with MATLAB codes downloadable from the authors' Web site Concludes each chapter with a summary of the state of the art and potential future directions for original research Kernel Adaptive Filtering is ideal for engineers, computer scientists, and graduate students interested in nonlinear adaptive systems for online applications (applications where the data stream arrives one sample at a time and incremental optimal solutions are desirable). It is also a useful guide for those who look for nonlinear adaptive filtering methodologies to solve practical problems.
Download or read book Time Series in High Dimension the General Dynamic Factor Model written by Marc Hallin and published by World Scientific Publishing Company. This book was released on 2020-03-30 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt: Factor models have become the most successful tool in the analysis and forecasting of high-dimensional time series. This monograph provides an extensive account of the so-called General Dynamic Factor Model methods. The topics covered include: asymptotic representation problems, estimation, forecasting, identification of the number of factors, identification of structural shocks, volatility analysis, and applications to macroeconomic and financial data.