EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Geomechanical and Petrophysical Properties of Mudrocks

Download or read book Geomechanical and Petrophysical Properties of Mudrocks written by E.H. Rutter and published by Geological Society of London. This book was released on 2017-10-09 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: A surge of interest in the geomechanical and petrophysical properties of mudrocks (shales) has taken place in recent years following the development of a shale gas industry in the United States and elsewhere, and with the prospect of similar developments in the UK. Also, these rocks are of particular importance in excavation and construction geotechnics and other rock engineering applications, such as underground natural gas storage, carbon dioxide disposal and radioactive waste storage. They may greatly influence the stability of natural and engineered slopes. Mudrocks, which make up almost three-quarters of all the sedimentary rocks on Earth, therefore impact on many areas of applied geoscience. This volume focuses on the mechanical behaviour and various physical properties of mudrocks. The 15 chapters are grouped into three themes: (i) physical properties such as porosity, permeability, fluid flow through cracks, strength and geotechnical behaviour; (ii) mineralogy and microstructure, which control geomechanical behaviour; and (iii) fracture, both in laboratory studies and in the field.

Book Fundamentals of Gas Shale Reservoirs

Download or read book Fundamentals of Gas Shale Reservoirs written by Reza Rezaee and published by John Wiley & Sons. This book was released on 2015-07-01 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides comprehensive information about the key exploration, development and optimization concepts required for gas shale reservoirs Includes statistics about gas shale resources and countries that have shale gas potential Addresses the challenges that oil and gas industries may confront for gas shale reservoir exploration and development Introduces petrophysical analysis, rock physics, geomechanics and passive seismic methods for gas shale plays Details shale gas environmental issues and challenges, economic consideration for gas shale reservoirs Includes case studies of major producing gas shale formations

Book Geomechanical Studies of the Barnett Shale  Texas  USA

Download or read book Geomechanical Studies of the Barnett Shale Texas USA written by John Peter Vermylen and published by Stanford University. This book was released on 2011 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents five studies of a gas shale reservoir using diverse methodologies to investigate geomechanical and transport properties that are important across the full reservoir lifecycle. Using the Barnett shale as a case study, we investigated adsorption, permeability, geomechanics, microseismicity, and stress evolution in two different study areas. The main goals of this thesis can be divided into two parts: first, to investigate how flow properties evolve with changes in stress and gas species, and second, to understand how the interactions between stress, fractures, and microseismicity control the creation of a permeable reservoir volume during hydraulic fracturing. In Chapter 2, we present results from adsorption and permeability experiments conducted on Barnett shale rock samples. We found Langmuir-type adsorption of CH4 and N2 at magnitudes consistent with previous studies of the Barnett shale. Three of our samples demonstrated BET-type adsorption of CO2, in contrast to all previous studies on CO2 adsorption in gas shales, which found Langmuir-adsorption. At low pressures (600 psi), we found preferential adsorption of CO2 over CH4 ranging from 3.6x to 5.5x. While our measurements were conducted at low pressures (up to 1500 psi), when our model fits are extrapolated to reservoir pressures they reach similar adsorption magnitudes as have been found in previous studies. At these high reservoir pressures, the very large preferential adsorption of CO2 over CH4 (up to 5-10x) suggests a significant potential for CO2 storage in gas shales like the Barnett if practical problems of injectivity and matrix transport can be overcome. We successfully measured permeability versus effective stress on two intact Barnett shale samples. We measured permeability effective stress coefficients less than 1 on both samples, invalidating our hypothesis that there might be throughgoing flow paths within the soft, porous organic kerogen that would lead the permeability effective stress coefficient to be greater than 1. The results suggest that microcracks are likely the dominant flow paths at these scales. In Chapter 3, we present integrated geological, geophysical, and geomechanical data in order to characterize the rock properties in our Barnett shale study area and to model the stress state in the reservoir before hydraulic fracturing occurred. Five parallel, horizontal wells were drilled in the study area and then fractured using three different techniques. We used the well logs from a vertical pilot well and a horizontal well to constrain the stress state in the reservoir. While there was some variation along the length of the well, we were able to determine a best fit stress state of Pp = 0.48 psi/ft, Sv = 1.1 psi/ft, SHmax = 0.73 psi/ft, and Shmin = 0.68 psi/ft. Applying this stress state to the mapped natural fractures indicates that there is significant potential for induced shear slip on natural fracture planes in this region of the Barnett, particularly close to the main hydraulic fracture where the pore pressure increase during hydraulic fracturing is likely to be very high. In Chapter 4, we present new techniques to quantify the robustness of hydraulic fracturing in gas shale reservoirs. The case study we analyzed involves five parallel horizontal wells in the Barnett shale with 51 frac stages. To investigate the numbers, sizes, and types of microearthquakes initiated during each frac stage, we created Gutenberg-Richter-type magnitude distribution plots to see if the size of events follows the characteristic scaling relationship found in natural earthquakes. We found that slickwater fracturing does generate a log-linear distribution of microearthquakes, but that it creates proportionally more small events than natural earthquake sources. Finding considerable variability in the generation of microearthquakes, we used the magnitude analysis as a proxy for the "robustness" of the stimulation of a given stage. We found that the conventionally fractured well and the two alternately fractured wells ("zipperfracs") were more effective than the simultaneously fractured wells ("simulfracs") in generating microearthquakes. We also found that the later stages of fracturing a given well were more successful in generating microearthquakes than the early stages. In Chapter 5, we present estimates of stress evolution in our study reservoir through analysis of the instantaneous shut-in pressure (ISIP) at the end of each stage. The ISIP increased stage by stage for all wells, but the simulfrac wells showed the greatest increase and the zipperfrac wells the least. We modeled the stress increase in the reservoir with a simple sequence of 2-D cracks along the length of the well. When using a spacing of one crack per stage, the modeled stress increase was nearly identical to the measured stress increase in the zipperfrac wells. When using three cracks per stage, the modeled final stage stress magnitude matched the measured final stage stress magnitude from the simulfrac wells, but the rate of stress increase in the simulfrac wells was much more gradual than the model predicted. To further investigate the causes of these ISIP trends, we began numerical flow and stress analysis to more realistically model the processes in the reservoir. One of our hypotheses was that the shorter total time needed to complete all the stages of the simulfrac wells was the cause of the greater ISIP increase compared to the zipperfrac wells. The microseismic activity level measured in Chapter 4 also correlates with total length of injection, suggesting leak off into the reservoir encouraged shear failure. Numerical modeling using the coupled FEM and flow software GEOSIM was able to model some cumulative stress increase the reservoir, but the full trend was not replicated. Further work to model field observations of hydraulic fracturing will enhance our understanding of the impact that hydraulic fracturing and stress change have on fracture creation and permeability enhancement in gas shales.

Book Fundamental Investigation of Gas Storage and Transport in Shales

Download or read book Fundamental Investigation of Gas Storage and Transport in Shales written by Nirjhor Chakraborty and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas storage and transport in shales is very different from sandstones or limestones. This is not only due to their inherently lower porosity and substantially lower permeability, but also because more complex and fundamentally different physical mechanistic phenomena govern both storage and transport. We use gas injection porosimetry to measure the storage of several single-component gases at supercritical pressures and temperatures on whole core plugs of Marcellus, Haynesville, Mancos, and Bakken shales. We find that the storage capacities of all gases far exceed helium storage in most shales. This is indicative of densification of gas that is taken up by the samples. Possible mechanisms for this densification such as confinement induced-supercriticality, adsorption, and capillary condensation are evaluated and the case for each is presented. Assuming the excess storage, beyond helium derived pore or free-gas volumes, is adsorption, adsorbed methane gas is found to account for between 12-75% of total gas-in-place (GIP) and is more than 40% of GIP in most cases. Despite being a noble gas, argon storage is found to be almost the same as methane. Ethylene gas storage in the Marcellus sample is found to be over 96% of GIP. Closer analysis of the data in conjunction with pore surface area estimates from LPSA measurements indicates a multilayer adsorption mechanism. This raises questions on the applicability of the Langmuir monolayer-model to describe storage in shales. Compositional and textural characterization indicates that organic content is a moderately important factor controlling gas storage behavior. However, three-dimensional spatial maps indicate that high storage is not limited to organic-rich regions. Pore size, rather than composition, appears to be a better predictor of storage behavior, with storage being proportional to the prevalence of nanopores and to total pore surface area. Gas transport in shale is also multi-mechanistic and cannot be separated from the underlying storage mechanisms. A numerical model is developed accounting for free-gas and adsorbed-phase diffusion, as well as adsorption-desorption kinetics. The model is validated on dynamic in-situ gas concentration data obtained via x-ray CT imaging of the Marcellus Shale. Modeling results suggest that concentration-dependent surface diffusion is the dominant mechanism controlling gas transport in the Marcellus. It is observed that the surface diffusion coefficient can exceed the free-gas diffusion coefficient by up to ten times.

Book Hydraulic Fracturing in Unconventional Reservoirs

Download or read book Hydraulic Fracturing in Unconventional Reservoirs written by Hoss Belyadi and published by Gulf Professional Publishing. This book was released on 2019-06-18 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic Fracturing in Unconventional Reservoirs: Theories, Operations, and Economic Analysis, Second Edition, presents the latest operations and applications in all facets of fracturing. Enhanced to include today’s newest technologies, such as machine learning and the monitoring of field performance using pressure and rate transient analysis, this reference gives engineers the full spectrum of information needed to run unconventional field developments. Covering key aspects, including fracture clean-up, expanded material on refracturing, and a discussion on economic analysis in unconventional reservoirs, this book keeps today's petroleum engineers updated on the critical aspects of unconventional activity. Helps readers understand drilling and production technology and operations in shale gas through real-field examples Covers various topics on fractured wells and the exploitation of unconventional hydrocarbons in one complete reference Presents the latest operations and applications in all facets of fracturing

Book Development of Unconventional Reservoirs

Download or read book Development of Unconventional Reservoirs written by Reza Rezaee and published by MDPI. This book was released on 2020-04-16 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need for energy is increasing and but the production from conventional reservoirs is declining quickly. This requires an economically and technically feasible source of energy for the coming years. Among some alternative future energy solutions, the most reasonable source is from unconventional reservoirs. As the name “unconventional” implies, different and challenging approaches are required to characterize and develop these resources. This Special Issue covers some of the technical challenges for developing unconventional energy sources from shale gas/oil, tight gas sand, and coalbed methane.

Book Microporoelastic Modeling of Organic rich Shales

Download or read book Microporoelastic Modeling of Organic rich Shales written by Siavash Khosh Sokhan Monfared and published by . This book was released on 2015 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to their abundance, organic-rich shales are playing a critical role in re-defining the world's energy landscape leading to shifts in global geopolitics. However, technical challenges and environmental concerns continue to contribute to the slow growth of organic-rich shale exploration and exploitation worldwide. The engineering and scientific challenges arise from the extremely heterogeneous and anisotropic nature of these naturally occurring geo-composites at multiple length scales. Specifically, the anisotropic poroelastic behavior of organic-rich shales becomes of critical importance for petroleum engineers. Thus, the focus of this thesis is to capture mechanisms of first-order contribution to the effective anisotropic poroelasticity of organic-rich shales which can pave the way for more efficient and effective exploration and exploitation. We introduce an original approach for micromechanical modeling of organic-rich shales which accounts for the effect of organic maturity on the overall anisotropic poroelasticity through morphology considerations. This morphology contribution is captured by means of an effective media theory that bridges the gap between immature and mature systems through the choice of the system's micro-texture; namely a matrix-inclusion morphology (Mori-Tanaka) for immature systems and a polycrystal/ granular morphology for mature systems. Also, we show that interfaces play a role on the effective elasticity of mature organic-rich shales. The models are calibrated by means of ultrasonic pulse velocity measurements of elastic properties and validated by means of lab measured nanoindentation data. Sensitivity analyses using Spearman's Partial Rank Correlation Coefficient show the importance of porosity and Total Organic Carbon (TOC) as key input parameters for accurate model predictions. These models' developments provide a mean to define a "unique" set of clay elasticity. They also highlight the importance of the depositional environment, burial and diagenetic processes on overall mechanical and poromechanical behavior of organic-rich shales.

Book Geomechanical Studies of the Barnett Shale  Texas  USA

Download or read book Geomechanical Studies of the Barnett Shale Texas USA written by John Peter Vermylen and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents five studies of a gas shale reservoir using diverse methodologies to investigate geomechanical and transport properties that are important across the full reservoir lifecycle. Using the Barnett shale as a case study, we investigated adsorption, permeability, geomechanics, microseismicity, and stress evolution in two different study areas. The main goals of this thesis can be divided into two parts: first, to investigate how flow properties evolve with changes in stress and gas species, and second, to understand how the interactions between stress, fractures, and microseismicity control the creation of a permeable reservoir volume during hydraulic fracturing. In Chapter 2, we present results from adsorption and permeability experiments conducted on Barnett shale rock samples. We found Langmuir-type adsorption of CH4 and N2 at magnitudes consistent with previous studies of the Barnett shale. Three of our samples demonstrated BET-type adsorption of CO2, in contrast to all previous studies on CO2 adsorption in gas shales, which found Langmuir-adsorption. At low pressures (600 psi), we found preferential adsorption of CO2 over CH4 ranging from 3.6x to 5.5x. While our measurements were conducted at low pressures (up to 1500 psi), when our model fits are extrapolated to reservoir pressures they reach similar adsorption magnitudes as have been found in previous studies. At these high reservoir pressures, the very large preferential adsorption of CO2 over CH4 (up to 5-10x) suggests a significant potential for CO2 storage in gas shales like the Barnett if practical problems of injectivity and matrix transport can be overcome. We successfully measured permeability versus effective stress on two intact Barnett shale samples. We measured permeability effective stress coefficients less than 1 on both samples, invalidating our hypothesis that there might be throughgoing flow paths within the soft, porous organic kerogen that would lead the permeability effective stress coefficient to be greater than 1. The results suggest that microcracks are likely the dominant flow paths at these scales. In Chapter 3, we present integrated geological, geophysical, and geomechanical data in order to characterize the rock properties in our Barnett shale study area and to model the stress state in the reservoir before hydraulic fracturing occurred. Five parallel, horizontal wells were drilled in the study area and then fractured using three different techniques. We used the well logs from a vertical pilot well and a horizontal well to constrain the stress state in the reservoir. While there was some variation along the length of the well, we were able to determine a best fit stress state of Pp = 0.48 psi/ft, Sv = 1.1 psi/ft, SHmax = 0.73 psi/ft, and Shmin = 0.68 psi/ft. Applying this stress state to the mapped natural fractures indicates that there is significant potential for induced shear slip on natural fracture planes in this region of the Barnett, particularly close to the main hydraulic fracture where the pore pressure increase during hydraulic fracturing is likely to be very high. In Chapter 4, we present new techniques to quantify the robustness of hydraulic fracturing in gas shale reservoirs. The case study we analyzed involves five parallel horizontal wells in the Barnett shale with 51 frac stages. To investigate the numbers, sizes, and types of microearthquakes initiated during each frac stage, we created Gutenberg-Richter-type magnitude distribution plots to see if the size of events follows the characteristic scaling relationship found in natural earthquakes. We found that slickwater fracturing does generate a log-linear distribution of microearthquakes, but that it creates proportionally more small events than natural earthquake sources. Finding considerable variability in the generation of microearthquakes, we used the magnitude analysis as a proxy for the "robustness" of the stimulation of a given stage. We found that the conventionally fractured well and the two alternately fractured wells ("zipperfracs") were more effective than the simultaneously fractured wells ("simulfracs") in generating microearthquakes. We also found that the later stages of fracturing a given well were more successful in generating microearthquakes than the early stages. In Chapter 5, we present estimates of stress evolution in our study reservoir through analysis of the instantaneous shut-in pressure (ISIP) at the end of each stage. The ISIP increased stage by stage for all wells, but the simulfrac wells showed the greatest increase and the zipperfrac wells the least. We modeled the stress increase in the reservoir with a simple sequence of 2-D cracks along the length of the well. When using a spacing of one crack per stage, the modeled stress increase was nearly identical to the measured stress increase in the zipperfrac wells. When using three cracks per stage, the modeled final stage stress magnitude matched the measured final stage stress magnitude from the simulfrac wells, but the rate of stress increase in the simulfrac wells was much more gradual than the model predicted. To further investigate the causes of these ISIP trends, we began numerical flow and stress analysis to more realistically model the processes in the reservoir. One of our hypotheses was that the shorter total time needed to complete all the stages of the simulfrac wells was the cause of the greater ISIP increase compared to the zipperfrac wells. The microseismic activity level measured in Chapter 4 also correlates with total length of injection, suggesting leak off into the reservoir encouraged shear failure. Numerical modeling using the coupled FEM and flow software GEOSIM was able to model some cumulative stress increase the reservoir, but the full trend was not replicated. Further work to model field observations of hydraulic fracturing will enhance our understanding of the impact that hydraulic fracturing and stress change have on fracture creation and permeability enhancement in gas shales.

Book Unconventional Reservoir Geomechanics

Download or read book Unconventional Reservoir Geomechanics written by Mark D. Zoback and published by Cambridge University Press. This book was released on 2019-05-16 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.

Book Geophysical Responses of Organic rich Shale and the Effect of Mineralogy

Download or read book Geophysical Responses of Organic rich Shale and the Effect of Mineralogy written by Zhiwei Qian and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Total organic carbon (TOC) is one of the most important parameters for indicating the resource potential of unconventional shale reservoirs. Because of the low density and velocity of organic matter, some seismic attributes like P-wave impedance (Ip) and Vp/Vs ratio would respond to high TOC content. So we can use these seismic attributes to remotely identify organic-rich areas. However, these attributes are not equally efficient for all shale formations. The behavior of the geophysical response on TOC content may vary due to mineral variations of different shale plays. So, it is important to understand the mineral composition, study their impact on geophysical responses, and choose the right seismic attributes for the interpretation of a certain shale play. A rock physics modeling can be applied to link the in-situ rock parameters like mineral composition, TOC content, porosity etc. with the geophysical response. In this thesis work, I study the geophysical response of Barnett shale. In addition, I study the impacts of the mineral variations within an individual shale reservoir on geophysical response. Certain relationships between TOC and volume percentage of clay and quartz were observed, which should be taken into account when performing rock physics modeling, as opposed to assuming the mineral composition changing randomly.

Book Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs

Download or read book Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs written by Jianchao Cai and published by Elsevier. This book was released on 2019-01-24 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs presents a comprehensive look at these new methods and technologies for the petrophysical characterization of unconventional reservoirs, including recent theoretical advances and modeling on fluids transport in unconventional reservoirs. The book is a valuable tool for geoscientists and engineers working in academia and industry. Many novel technologies and approaches, including petrophysics, multi-scale modelling, rock reconstruction and upscaling approaches are discussed, along with the challenge of the development of unconventional reservoirs and the mechanism of multi-phase/multi-scale flow and transport in these structures. Includes both practical and theoretical research for the characterization of unconventional reservoirs Covers the basic approaches and mechanisms for enhanced recovery techniques in unconventional reservoirs Presents the latest research in the fluid transport processes in unconventional reservoirs

Book Multiscale Investigation of Fluid Transport and Enhanced Recovery in Shale

Download or read book Multiscale Investigation of Fluid Transport and Enhanced Recovery in Shale written by Youssef Magdy Abdou Mohamed Elkady and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In 2019, the U.S. produced 75% of its natural gas from shales and 59% of its oil from tight oil resources. Multistage hydraulic fracturing along with horizontal pad drilling enabled operators to increase significantly production from these resources. Despite the vastness of shale resources, recovery factors are small typically, amounting to 5-10% for oil and ~25% for gas. In this work we examine various enhanced recovery techniques across multiple length scales to gain a better understanding of enhanced resource recovery mechanisms resulting from injection of gas, such as carbon dioxide (CO2). In doing so, we develop in-house shale characterization experimental methods to quantify fluid flow, storage, and recovery in the laboratory. An experimental workflow is presented for rock characterization (porosity, permeability, and adsorption) to quantify accurately gas storage and flow needed for enhanced gas recovery (EGR) experiments. Both pulse decay and Computed Tomography (CT) were used independently to establish consistency between results derived from each method. New image processing routines for CT data were developed that better match mass balance derived porosity and storativity results compared to conventional CT methods. Measured porosity values using helium (He) for each sample proved to be constant at various equilibrium pore pressures justifying its use as a reference gas for excess adsorption computations for other gases studied. Nitrogen (N2), methane (CH4), krypton (Kr), and CO2 apparent permeability and storativity at different pore pressures were determined. All adsorptive gases, except CO2, exhibited monolayer Langmuir adsorption behavior. CO2 uniquely showed multilayer behavior that was observed in two cores (Eagle Ford (EF1) and Wolfcamp (WC2)). The impact of adsorption on gas permeability was captured in our experiments showing a negative correlation between adsorption affinity and permeability. For instance, Kr and CO2 reduced the liquid-like permeability value determined using He by factors of 2 and 8, respectively, for sample EF1. Finally, a persistent five-fold reduction in permeability was observed in sample WC2 after CO2 exposure that is attributed to kerogen swelling or matrix softening. The degree of kerogen swelling is impacted by the affinity of the gas to adsorb and its ability to dissolve into kerogen. Matrix softening, on the other hand, enhances compaction of the pore space under constant effective stresses. Diverse diagnostics across multiple scales were used to examine the impact of CO2-water fluids on oil recovery and matrix flow on both core and micron scales. Enhanced oil recovery (EOR) was investigated on a Utica (W2-2) core that was artificially split and saturated with crude oil for 3 months. The core was cut to create a conductive pathway and to increase surface area to help oil saturate the sample. Core-scale examinations using pulse decay, injection experiments, and CT showed no material enhancement to matrix fluid flow or oil recovery using dry supercritical CO2, water-saturated CO2, or carbonated water. Approximately 87% of the in-situ oil was recovered using dry supercritical CO2 initially without any further recovery. CT visualizations showed that most of the oil resided in the main fracture with small amounts of oil residing in the matrix. Potential enhancement in core-scale matrix flow was investigated by conducting He pressure pulses before and after a carbonate-rich Eagle Ford (EF-1) sample was exposed to carbonated water for 6 months. Measured permeability values were identical before and after exposure to the acidic fluid. Micron-scale findings, on the other hand, using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and micro-CT showed vugs and pits, from calcite dissolution, ranging from 1 micro-m to 10's micro-m in size in samples exposed to carbonated water. These samples were exposed to carbonated water in either a batch reactor setting or a core-scale carbonated water injection experiment. The wet supercritical CO2 phase did not induce any observable carbonate dissolution in the shale sample tested. Finally, it was determined that gold coating of the sample (a preparation step needed for SEM imaging) has no impact on fluid-rock interaction during our experiments. A novel experimental setup was designed for investigating EGR in shale cores. The detailed sample characterization conducted on both samples (EF1 and WC2) was used to assess initial rock storativity, adsorption, and permeability that are vital for proper experimental planning given the small pore volumes in shales. Experiments were run with Kr or CH4 as in-situ gases and CO2 or N2 as injection gases. Continuous Kr gas injection experiments showed consistent results between mass balance and CT-derived results establishing reliability in our CT depictions. CO2 gas injection had a better initial displacement efficiency compared to N2 when displacing in-situ Kr. Homogeneous sample WC2 required approximately four times fewer pore volume injections to produce the entire original gas in place compared to sample EF1 that had two CT-visible conductive pathways or microcracks. Finally, core-scale findings reveal that continuous gas injection is more effective than huff-n-puff for enhancing gas recovery on a pore volume injected basis. Core-scale simulations using CMG GEM were created to mimic and validate lab pulse decay and EGR experiments. Porosity, permeability, and adsorption values were validated for various pressure pulses across both cores (EF1 and WC2) using all the gases investigated (He, N2, Kr, CH4, and CO2). Coal bed methane modeling in CMG GEM was utilized for matching highly adsorptive gases (Kr and CO2) due to a delayed downstream response given the experimentally determined porosity, permeability, and adsorption values. Another critical parameter, diffusion characteristic time (t*), was identified using this model during the history matching process that quantifies a mass transfer resistance to fracture flow due to fracture-matrix gas exchange. Although our experiments were not designed to measure directly t*, various pressure pulses for CO2 and Kr required a diffusion time of 1.44-1.92 hrs (0.06-0.08 days) to match our pressure pulses using coal bed methane modeling. A continuous gas injection experiment was simulated in CMG GEM that matched the experimental pressure history, recovery results, and CT visualizations for sample EF1. Sensitivity studies on diffusion time revealed its strong influence on recovery in low permeability areas that are predominant during late production. A huff-n-puff experiment was simulated given the same model parameters as the history matched continuous injection experiment. Huff-n-puff had a poorer recovery curve compared to continuous injection due to gas entrapment away from the microcracks with each cycle. Finally, core-scale simulations show that long diffusion times are favorable for huff-n-puff but disadvantageous for continuous injection emphasizing the importance of sample characterization, including transport properties, before evaluating the different EGR techniques. Learnings from core-scale experiments and simulations were translated to assess EGR applicability at field scale. Multiple reservoir uncertainties (porosity, stimulated permeability, diffusion time) and operational decisions (e.g. injection and soak times) were explored to understand their influence on CH4 recovery and CO2 storage for continuous injection and huff-n-puff. A simplified CMG GEM field model was created that utilized 1300 m horizontal wells that have 13 fracture stages with 4 clusters per stage. Field continuous injection scenarios yielded a loss in cumulative CH4 production compared to cases with primary production only over a 20 year period. Injection started after 10 years of primary production; however, the economic benefits from CO2 storage outweighed CH4 losses in cases with short diffusion times (

Book The Rock Physics Handbook

Download or read book The Rock Physics Handbook written by Gary Mavko and published by Cambridge University Press. This book was released on 2020-01-09 with total page 741 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brings together widely scattered theoretical and laboratory rock physics relations critical for modelling and interpretation of geophysical data.

Book Unconventional Oil and Gas Resources

Download or read book Unconventional Oil and Gas Resources written by Usman Ahmed and published by CRC Press. This book was released on 2016-04-05 with total page 862 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the shale revolution continues in North America, unconventional resource markets are emerging on every continent. In the next eight to ten years, more than 100,000 wells and one- to two-million hydraulic fracturing stages could be executed, resulting in close to one trillion dollars in industry spending. This growth has prompted professionals ex

Book Microflows

    Book Details:
  • Author : George Em Karniadakis
  • Publisher : Springer
  • Release : 2001-11-16
  • ISBN : 9780387953243
  • Pages : 340 pages

Download or read book Microflows written by George Em Karniadakis and published by Springer. This book was released on 2001-11-16 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph focusing on gas flows addresses mostly theoretical issues and develops semi-analytical models as well as numerical methods for stimulating micro flows. It is appropriate for researchers in fluid mechanics interested in this new flow field as well as for electrical or mechanical engineers or physicists who need to incorporate flow modeling into their work.

Book Unconventional Hydrocarbon Resources

Download or read book Unconventional Hydrocarbon Resources written by Reza Barati and published by John Wiley & Sons. This book was released on 2020-12-03 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive textbook presenting techniques for the analysis and characterization of shale plays Significant reserves of hydrocarbons cannot be extracted using conventional methods. Improvements in techniques such as horizontal drilling and hydraulic fracturing have increased access to unconventional hydrocarbon resources, ushering in the “shale boom” and disrupting the energy sector. Unconventional Hydrocarbon Resources: Techniques for Reservoir Engineering Analysis covers the geochemistry, petrophysics, geomechanics, and economics of unconventional shale oil plays. The text uses a step-by-step approach to demonstrate industry-standard workflows for calculating resource volume and optimizing the extraction process. Volume highlights include: Methods for rock and fluid characterization of unconventional shale plays A workflow for analyzing wells with stimulated reservoir volume regions An unconventional approach to understanding of fluid flow through porous media A comprehensive summary of discoveries of massive shale resources worldwide Data from Eagle Ford, Woodford, Wolfcamp, and The Bakken shale plays Examples, homework assignments, projects, and access to supplementary online resources Hands-on teaching materials for use in petroleum engineering software applications The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.