EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Polynomial Approximation of Differential Equations

Download or read book Polynomial Approximation of Differential Equations written by Daniele Funaro and published by Springer Science & Business Media. This book was released on 2008-10-04 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the analysis of approximate solution techniques for differential equations, based on classical orthogonal polynomials. These techniques are popularly known as spectral methods. In the last few decades, there has been a growing interest in this subject. As a matter offact, spectral methods provide a competitive alternative to other standard approximation techniques, for a large variety of problems. Initial ap plications were concerned with the investigation of periodic solutions of boundary value problems using trigonometric polynomials. Subsequently, the analysis was extended to algebraic polynomials. Expansions in orthogonal basis functions were preferred, due to their high accuracy and flexibility in computations. The aim of this book is to present a preliminary mathematical background for be ginners who wish to study and perform numerical experiments, or who wish to improve their skill in order to tackle more specific applications. In addition, it furnishes a com prehensive collection of basic formulas and theorems that are useful for implementations at any level of complexity. We tried to maintain an elementary exposition so that no experience in functional analysis is required.

Book Solution of Differential Equation Models by Polynomial Approximation

Download or read book Solution of Differential Equation Models by Polynomial Approximation written by John Villadsen and published by Prentice Hall. This book was released on 1978 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sparse Polynomial Approximation of High Dimensional Functions

Download or read book Sparse Polynomial Approximation of High Dimensional Functions written by Ben Adcock and published by SIAM. This book was released on 2022-02-16 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over seventy years ago, Richard Bellman coined the term “the curse of dimensionality” to describe phenomena and computational challenges that arise in high dimensions. These challenges, in tandem with the ubiquity of high-dimensional functions in real-world applications, have led to a lengthy, focused research effort on high-dimensional approximation—that is, the development of methods for approximating functions of many variables accurately and efficiently from data. This book provides an in-depth treatment of one of the latest installments in this long and ongoing story: sparse polynomial approximation methods. These methods have emerged as useful tools for various high-dimensional approximation tasks arising in a range of applications in computational science and engineering. It begins with a comprehensive overview of best s-term polynomial approximation theory for holomorphic, high-dimensional functions, as well as a detailed survey of applications to parametric differential equations. It then describes methods for computing sparse polynomial approximations, focusing on least squares and compressed sensing techniques. Sparse Polynomial Approximation of High-Dimensional Functions presents the first comprehensive and unified treatment of polynomial approximation techniques that can mitigate the curse of dimensionality in high-dimensional approximation, including least squares and compressed sensing. It develops main concepts in a mathematically rigorous manner, with full proofs given wherever possible, and it contains many numerical examples, each accompanied by downloadable code. The authors provide an extensive bibliography of over 350 relevant references, with an additional annotated bibliography available on the book’s companion website (www.sparse-hd-book.com). This text is aimed at graduate students, postdoctoral fellows, and researchers in mathematics, computer science, and engineering who are interested in high-dimensional polynomial approximation techniques.

Book Applying Power Series to Differential Equations

Download or read book Applying Power Series to Differential Equations written by James Sochacki and published by Springer Nature. This book was released on 2023-03-15 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is aimed to undergraduate STEM majors and to researchers using ordinary differential equations. It covers a wide range of STEM-oriented differential equation problems that can be solved using computational power series methods. Many examples are illustrated with figures and each chapter ends with discovery/research questions most of which are accessible to undergraduate students, and almost all of which may be extended to graduate level research. Methodologies implemented may also be useful for researchers to solve their differential equations analytically or numerically. The textbook can be used as supplementary for undergraduate coursework, graduate research, and for independent study.

Book Approximation Methods for Solutions of Differential and Integral Equations

Download or read book Approximation Methods for Solutions of Differential and Integral Equations written by V. K. Dzyadyk and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-11-05 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: No detailed description available for "Approximation Methods for Solutions of Differential and Integral Equations".

Book Sparse Polynomial Approximation of High Dimensional Functions

Download or read book Sparse Polynomial Approximation of High Dimensional Functions written by Ben Adcock and published by Society for Industrial and Applied Mathematics (SIAM). This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is a book about polynomial approximation in high dimensions"--

Book Weighted Polynomial Approximation and Numerical Methods for Integral Equations

Download or read book Weighted Polynomial Approximation and Numerical Methods for Integral Equations written by Peter Junghanns and published by Springer Nature. This book was released on 2021-08-10 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a combination of two topics: one coming from the theory of approximation of functions and integrals by interpolation and quadrature, respectively, and the other from the numerical analysis of operator equations, in particular, of integral and related equations. The text focusses on interpolation and quadrature processes for functions defined on bounded and unbounded intervals and having certain singularities at the endpoints of the interval, as well as on numerical methods for Fredholm integral equations of first and second kind with smooth and weakly singular kernel functions, linear and nonlinear Cauchy singular integral equations, and hypersingular integral equations. The book includes both classic and very recent results and will appeal to graduate students and researchers who want to learn about the approximation of functions and the numerical solution of operator equations, in particular integral equations.

Book Numerical Approximation of Partial Differential Equations

Download or read book Numerical Approximation of Partial Differential Equations written by Alfio Quarteroni and published by Springer Science & Business Media. This book was released on 2009-02-11 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).

Book Convergence  Approximation  and Differential Equations

Download or read book Convergence Approximation and Differential Equations written by Eugene A. Herman and published by John Wiley & Sons. This book was released on 1986 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new approach to the teaching of undergraduate level mathematics that includes topics from numerical analysis, calculus and differential equations. It stresses a modern viewpoint, combining both computational and theoretical aspects that will help students use the computer as a daily tool as well as aid them in the understanding of basic theoretical concepts. Numerous examples, applications and exercise sets are also included in the text.

Book Multivariate Polynomial Approximation

Download or read book Multivariate Polynomial Approximation written by Manfred Reimer and published by Birkhäuser. This book was released on 2012-12-06 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces general theory by presenting the most important facts on multivariate interpolation, quadrature, orthogonal projections and their summation, all treated under a constructive view, and embedded in the theory of positive linear operators. On this background, the book builds the first comprehensive introduction to the theory of generalized hyperinterpolation. Several parts of the book are based on rotation principles, which are presented in the beginning of the book.

Book Numerical Methods III   Approximation of Functions

Download or read book Numerical Methods III Approximation of Functions written by Boris Obsieger and published by university-books.eu. This book was released on 2013-10-25 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is written primarily for the students on technical universities, but also as a useful handbook for engineers and PhD students. It introduces reader into various types of approximations of functions, which are defined either explicitly or by their values in the distinct set of points, as well as into economisation of existing approximation formulas. Why the approximation of functions is so important? Simply because various functions cannot be calculated without approximation. Approximation formulas for some of these functions (such as trigonometric functions and logarithms) are already implemented in the calculators and standard computer libraries, providing the precision to all bits of memory in which a value is stored. So high precision is not usually required in the engineering practice, and use more numerical operations that is really necessary. Economised approximation formulas can provide required precision with less numerical operation, and can made numerical algorithms faster, especially when such formulas are used in nested loops. The other important use of approximation is in calculating functions that are defined by values in the chosen set of points, such as in solving integral equations (usually obtained from differential equations). The book is divided into five chapters. In the first chapter are briefly explained basic principles of approximations, i.e. approximations near the chosen point (by Maclaurin, Taylor or Padé expansion), principles of approximations with orthogonal series and principles of least squares approximations. In the second chapter, various types of least squares polynomial approximations, particularly those by using orthogonal polynomials such as Legendre, Jacobi, Laguerre, Hermite, Zernike and Gram polynomials are explained. Third chapter explains approximations with Fourier series, which are the base for developing approximations with Chebyshev polynomials (fourth chapter). Uniform approximation and further usage of Chebyshev polynomials in the almost uniform approximation, as well as in economisation of existing approximation formulas, are described in fifth chapter. Practical applications of described approximation procedures are supported by 35 algorithms and 40 examples. Besides its practical usage, the given text with 36 figures and 11 tables, partially in colour, represents a valuable background for understanding, developing and applying various numerical methods, such as interpolation, numerical integration and solving partial differential equations, which are topics in the further volumes of the series Numerical Methods.

Book A Simple Introduction to Numerical Analysis

Download or read book A Simple Introduction to Numerical Analysis written by R.D Harding and published by CRC Press. This book was released on 1989-01-01 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approximation techniques are widely used in mathematics and applied physics, as exact solutions are frequently impossible to obtain. A Simple Introduction to Numerical Analysis, Volume 2: Interpolation and Approximation extends the first volume to consider problems in interpolation and approximation. Topics covered include the construction of interpolating functions, the determination of polynomial and rational function approximations, numerical quadrature, and the solution of boundary value problems in ordinary differential equations. As with the previous volume, the text is integrated with a software package that allows the reader to work through numerous examples. It is also possible to use the software to consider problems that are beyond the scope of the text. The authors' expertise in combining text and software has resulted in a very readable work.

Book Chebyshev Polynomials

Download or read book Chebyshev Polynomials written by J.C. Mason and published by CRC Press. This book was released on 2002-09-17 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chebyshev polynomials crop up in virtually every area of numerical analysis, and they hold particular importance in recent advances in subjects such as orthogonal polynomials, polynomial approximation, numerical integration, and spectral methods. Yet no book dedicated to Chebyshev polynomials has been published since 1990, and even that work focuse

Book Shape Preserving Approximation by Real and Complex Polynomials

Download or read book Shape Preserving Approximation by Real and Complex Polynomials written by Sorin G. Gal and published by Springer Science & Business Media. This book was released on 2010-06-09 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: First comprehensive treatment in book form of shape-preserving approximation by real or complex polynomials in one or several variables Of interest to grad students and researchers in approximation theory, mathematical analysis, numerical analysis, Computer Aided Geometric Design, robotics, data fitting, chemistry, fluid mechanics, and engineering Contains many open problems to spur future research Rich and updated bibliography

Book Polynomial Operator Equations in Abstract Spaces and Applications

Download or read book Polynomial Operator Equations in Abstract Spaces and Applications written by Ioannis K. Argyros and published by CRC Press. This book was released on 2020-10-07 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polynomial operators are a natural generalization of linear operators. Equations in such operators are the linear space analog of ordinary polynomials in one or several variables over the fields of real or complex numbers. Such equations encompass a broad spectrum of applied problems including all linear equations. Often the polynomial nature of many nonlinear problems goes unrecognized by researchers. This is more likely due to the fact that polynomial operators - unlike polynomials in a single variable - have received little attention. Consequently, this comprehensive presentation is needed, benefiting those working in the field as well as those seeking information about specific results or techniques. Polynomial Operator Equations in Abstract Spaces and Applications - an outgrowth of fifteen years of the author's research work - presents new and traditional results about polynomial equations as well as analyzes current iterative methods for their numerical solution in various general space settings. Topics include: Special cases of nonlinear operator equations Solution of polynomial operator equations of positive integer degree n Results on global existence theorems not related with contractions Galois theory Polynomial integral and polynomial differential equations appearing in radiative transfer, heat transfer, neutron transport, electromechanical networks, elasticity, and other areas Results on the various Chandrasekhar equations Weierstrass theorem Matrix representations Lagrange and Hermite interpolation Bounds of polynomial equations in Banach space, Banach algebra, and Hilbert space The materials discussed can be used for the following studies Advanced numerical analysis Numerical functional analysis Functional analysis Approximation theory Integral and differential equation

Book Calculus From Approximation to Theory

Download or read book Calculus From Approximation to Theory written by Dan Sloughter and published by American Mathematical Soc.. This book was released on 2020-11-02 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: Calculus from Approximation to Theory takes a fresh and innovative look at the teaching and learning of calculus. One way to describe calculus might be to say it is a suite of techniques that approximate curved things by flat things and through a limiting process applied to those approximations arrive at an exact answer. Standard approaches to calculus focus on that limiting process as the heart of the matter. This text places its emphasis on the approximating processes and thus illuminates the motivating ideas and makes clearer the scientific usefulness, indeed centrality, of the subject while paying careful attention to the theoretical foundations. Limits are defined in terms of sequences, the derivative is defined from the best affine approximation, and greater attention than usual is paid to numerical techniques and the order of an approximation. Access to modern computational tools is presumed throughout and the use of these tools is woven seamlessly into the exposition and problems. All of the central topics of a yearlong calculus course are covered, with the addition of treatment of difference equations, a chapter on the complex plane as the arena for motion in two dimensions, and a much more thorough and modern treatment of differential equations than is standard. Dan Sloughter is Emeritus Professor of Mathematics at Furman University with interests in probability, statistics, and the philosophy of mathematics and statistics. He has been involved in efforts to reform calculus instruction for decades and has published widely on that topic. This book, one of the results of that work, is very well suited for a yearlong introduction to calculus that focuses on ideas over techniques.

Book Explorations In Numerical Analysis  Python Edition

Download or read book Explorations In Numerical Analysis Python Edition written by James V Lambers and published by World Scientific. This book was released on 2021-01-14 with total page 691 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is intended to introduce advanced undergraduate and early-career graduate students to the field of numerical analysis. This field pertains to the design, analysis, and implementation of algorithms for the approximate solution of mathematical problems that arise in applications spanning science and engineering, and are not practical to solve using analytical techniques such as those taught in courses in calculus, linear algebra or differential equations.Topics covered include computer arithmetic, error analysis, solution of systems of linear equations, least squares problems, eigenvalue problems, nonlinear equations, optimization, polynomial interpolation and approximation, numerical differentiation and integration, ordinary differential equations, and partial differential equations. For each problem considered, the presentation includes the derivation of solution techniques, analysis of their efficiency, accuracy and robustness, and details of their implementation, illustrated through the Python programming language.This text is suitable for a year-long sequence in numerical analysis, and can also be used for a one-semester course in numerical linear algebra.