EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Point Defects in Semiconductors II

Download or read book Point Defects in Semiconductors II written by J. Bourgoin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: In introductory solid-state physics texts we are introduced to the concept of a perfect crystalline solid with every atom in its proper place. This is a convenient first step in developing the concept of electronic band struc ture, and from it deducing the general electronic and optical properties of crystalline solids. However, for the student who does not proceed further, such an idealization can be grossly misleading. A perfect crystal does not exist. There are always defects. It was recognized very early in the study of solids that these defects often have a profound effect on the real physical properties of a solid. As a result, a major part of scientific research in solid-state physics has,' from the early studies of "color centers" in alkali halides to the present vigorous investigations of deep levels in semiconductors, been devoted to the study of defects. We now know that in actual fact, most of the interest ing and important properties of solids-electrical, optical, mechanical- are determined not so much by the properties of the perfect crystal as by its im perfections.

Book Point Defects in Semiconductors I

Download or read book Point Defects in Semiconductors I written by M. Lannoo and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: From its early beginning before the war, the field of semiconductors has developped as a classical example where the standard approximations of 'band theory' can be safely used to study its interesting electronic properties. Thus in these covalent crystals, the electronic structure is only weakly coupled with the atomic vibrations; one-electron Bloch functions can be used and their energy bands can be accurately computed in the neighborhood of the energy gap between the valence and conduction bands; nand p doping can be obtained by introducing substitutional impurities which only introduce shallow donors and acceptors and can be studied by an effective-mass weak-scattering description. Yet, even at the beginning, it was known from luminescence studies that these simple concepts failed to describe the various 'deep levels' introduced near the middle of the energy gap by strong localized imperfections. These imperfections not only include some interstitial and many substitutional atoms, but also 'broken bonds' associated with surfaces and interfaces, dis location cores and 'vacancies', i.e., vacant iattice sites in the crystal. In all these cases, the electronic structure can be strongly correlated with the details of the atomic structure and the atomic motion. Because these 'deep levels' are strongly localised, electron-electron correlations can also playa significant role, and any weak perturbation treatment from the perfect crystal structure obviously fails. Thus, approximate 'strong coupling' techniques must often be used, in line' with a more chemical de scription of bonding.

Book Point Defects in Semiconductors and Insulators

Download or read book Point Defects in Semiconductors and Insulators written by Johann-Martin Spaeth and published by Springer Science & Business Media. This book was released on 2003-01-22 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: The precedent book with the title "Structural Analysis of Point Defects in Solids: An introduction to multiple magnetic resonance spectroscopy" ap peared about 10 years ago. Since then a very active development has oc curred both with respect to the experimental methods and the theoretical interpretation of the experimental results. It would therefore not have been sufficient to simply publish a second edition of the precedent book with cor rections and a few additions. Furthermore the application of the multiple magnetic resonance methods has more and more shifted towards materials science and represents one of the important methods of materials analysis. Multiple magnetic resonances are used less now for "fundamental" studies in solid state physics. Therefore a more "pedestrian" access to the meth ods is called for to help the materials scientist to use them or to appreciate results obtained by using these methods. We have kept the two introduc tory chapters on conventional electron paramagnetic resonance (EPR) of the precedent book which are the base for the multiple resonance methods. The chapter on optical detection of EPR (ODEPR) was supplemented by sections on the structural information one can get from "forbidden" transitions as well as on spatial correlations between defects in the so-called "cross relaxation spectroscopy". High-field ODEPR/ENDOR was also added. The chapter on stationary electron nuclear double resonance (ENDOR) was supplemented by the method of stochastic END OR developed a few years ago in Paderborn which is now also commercially available.

Book Defects in Semiconductors

Download or read book Defects in Semiconductors written by and published by Academic Press. This book was released on 2015-06-08 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoretical paths. - Expert contributors - Reviews of the most important recent literature - Clear illustrations - A broad view, including examination of defects in different semiconductors

Book Structural Analysis of Point Defects in Solids

Download or read book Structural Analysis of Point Defects in Solids written by Johann-Martin Spaeth and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Strutural Analysis of Point Defects in Solids introduces the principles and techniques of modern electron paramagnetic resonance (EPR) spectroscopy essentialfor applications to the determination of microscopic defect structures. Investigations of the microscopic and electronic structure, and also correlations with the magnetic propertiesof solids, require various multiple magnetic resonance methods, such as ENDOR and optically detected EPR or ENDOR. This book discusses experimental, technological and theoretical aspects of these techniques comprehensively, from a practical viewpoint, with many illustrative examples taken from semiconductors and other solids. The nonspecialist is informed about the potential of the different methods, while the researcher faced with the task of determining defect structures isprovided with the necessary tools, together with much information on computer-aided methods of data analysis and the principles of modern spectrometer design.

Book Extended Defects in Semiconductors

Download or read book Extended Defects in Semiconductors written by D. B. Holt and published by Cambridge University Press. This book was released on 2014-08-07 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering topics that are especially important in electronic device development, this book surveys the properties, effects, roles and characterization of structurally extended defects in semiconductors. The basic properties of extended defects are outlined, and their effect on the electronic properties of semiconductors, their role in semiconductor devices, and techniques for their characterization are discussed. This text is suitable for advanced undergraduate and graduate students in materials science and engineering, and for those studying semiconductor physics.

Book Theory of Defects in Semiconductors

Download or read book Theory of Defects in Semiconductors written by David A. Drabold and published by Springer Science & Business Media. This book was released on 2007 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor science and technology is the art of defect engineering. The theoretical modeling of defects has improved dramatically over the past decade. These tools are now applied to a wide range of materials issues: quantum dots, buckyballs, spintronics, interfaces, amorphous systems, and many others. This volume presents a coherent and detailed description of the field, and brings together leaders in theoretical research. Today's state-of-the-art, as well as tomorrow’s tools, are discussed: the supercell-pseudopotential method, the GW formalism,Quantum Monte Carlo, learn-on-the-fly molecular dynamics, finite-temperature treatments, etc. A wealth of applications are included, from point defects to wafer bonding or the propagation of dislocation.

Book Charged Semiconductor Defects

    Book Details:
  • Author : Edmund G. Seebauer
  • Publisher : Springer Science & Business Media
  • Release : 2008-11-14
  • ISBN : 1848820593
  • Pages : 304 pages

Download or read book Charged Semiconductor Defects written by Edmund G. Seebauer and published by Springer Science & Business Media. This book was released on 2008-11-14 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Defects in semiconductors have been studied for many years, in many cases with a view toward controlling their behaviour through various forms of “defect engineering”. For example, in the bulk, charging significantly affects the total concentration of defects that are available to mediate phenomena such as solid-state diffusion. Surface defects play an important role in mediating surface mass transport during high temperature processing steps such as epitaxial film deposition, diffusional smoothing in reflow, and nanostructure formation in memory device fabrication. “Charged Defects in Semiconductors” details the current state of knowledge regarding the properties of the ionized defects that can affect the behaviour of advanced transistors, photo-active devices, catalysts, and sensors. Features: group IV, III-V, and oxide semiconductors; intrinsic and extrinsic defects; and, point defects, as well as defect pairs, complexes and clusters.

Book Theory of Defects in Solids

Download or read book Theory of Defects in Solids written by A. M. Stoneham and published by Oxford University Press. This book was released on 2001 with total page 982 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys the theory of defects in solids, concentrating on the electronic structure of point defects in insulators and semiconductors. The relations between different approaches are described, and the predictions of the theory compared critically with experiment. The physical assumptions and approximations are emphasized. The book begins with the perfect solid, then reviews the main methods of calculating defect energy levels and wave functions. The calculation and observable defect properties is discussed, and finally, the theory is applied to a range of defects that are very different in nature. This book is intended for research workers and graduate students interested in solid-state physics. From reviews of the hardback: 'It is unique and of great value to all interested in the basic aspects of defects in solids.' Physics Today 'This is a particularly worthy book, one which has long been needed by the theoretician and experimentalist alike.' Nature

Book Color Centers in Semiconductors for Quantum Applications

Download or read book Color Centers in Semiconductors for Quantum Applications written by Joel Davidsson and published by Linköping University Electronic Press. This book was released on 2021-02-08 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: Point defects in semiconductors have been and will continue to be relevant for applications. Shallow defects realize transistors, which power the modern age of information, and in the not-too-distant future, deep-level defects could provide the foundation for a revolution in quantum information processing. Deep-level defects (in particular color centers) are also of interest for other applications such as a single photon emitter, especially one that emits at 1550 nm, which is the optimal frequency for long-range communication via fiber optics. First-principle calculations can predict the energies and optical properties of point defects. I performed extensive convergence tests for magneto-optical properties, such as zero phonon lines, hyperfine coupling parameters, and zero-field splitting for the four different configurations of the divacancy in 4H-SiC. Comparing the converged results with experimental measurements, a clear identification of the different configurations was made. With this approach, I also identified all configurations for the silicon vacancy in 4H-SiC as well as the divacancy and silicon vacancy in 6H-SiC. The same method was further used to identify two additional configurations belonging to the divacancy present in a 3C stacking fault inclusion in 4H-SiC. I extended the calculated properties to include the transition dipole moment which provides the polarization, intensity, and lifetime of the zero phonon lines. When calculating the transition dipole moment, I show that it is crucial to include the self-consistent change of the electronic orbitals in the excited state due to the geometry relaxation. I tested the method on the divacancy in 4H-SiC, further strengthening the previous identification and providing accurate photoluminescence intensities and lifetimes. Finding stable point defects with the right properties for a given application is a challenging task. Due to the vast number of possible point defects present in bulk semiconductor materials, I designed and implemented a collection of automatic workflows to systematically investigate any point defects. This collection is called ADAQ (Automatic Defect Analysis and Qualification) and automates every step of the theoretical process, from creating defects to predicting their properties. Using ADAQ, I screened about 8000 intrinsic point defect clusters in 4H-SiC. This thesis presents an overview of the formation energy and the most relevant optical properties for these single and double point defects. These results show great promise for finding new color centers suitable for various quantum applications.

Book Defects in Solids

    Book Details:
  • Author : Richard J. D. Tilley
  • Publisher : John Wiley & Sons
  • Release : 2008-10-10
  • ISBN : 047038073X
  • Pages : 549 pages

Download or read book Defects in Solids written by Richard J. D. Tilley and published by John Wiley & Sons. This book was released on 2008-10-10 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a thorough understanding of the chemistry and physics of defects, enabling the reader to manipulate them in the engineering of materials. Reinforces theoretical concepts by placing emphasis on real world processes and applications. Includes two kinds of end-of-chapter problems: multiple choice (to test knowledge of terms and principles) and more extensive exercises and calculations (to build skills and understanding). Supplementary material on crystallography and band structure are included in separate appendices.

Book Defects and Impurities in Silicon Materials

Download or read book Defects and Impurities in Silicon Materials written by Yutaka Yoshida and published by Springer. This book was released on 2016-03-30 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book emphasizes the importance of the fascinating atomistic insights into the defects and the impurities as well as the dynamic behaviors in silicon materials, which have become more directly accessible over the past 20 years. Such progress has been made possible by newly developed experimental methods, first principle theories, and computer simulation techniques. The book is aimed at young researchers, scientists, and technicians in related industries. The main purposes are to provide readers with 1) the basic physics behind defects in silicon materials, 2) the atomistic modeling as well as the characterization techniques related to defects and impurities in silicon materials, and 3) an overview of the wide range of the research fields involved.

Book Advanced Calculations for Defects in Materials

Download or read book Advanced Calculations for Defects in Materials written by Audrius Alkauskas and published by John Wiley & Sons. This book was released on 2011-05-16 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book investigates the possible ways of improvement by applying more sophisticated electronic structure methods as well as corrections and alternatives to the supercell model. In particular, the merits of hybrid and screened functionals, as well as of the +U methods are assessed in comparison to various perturbative and Quantum Monte Carlo many body theories. The inclusion of excitonic effects is also discussed by way of solving the Bethe-Salpeter equation or by using time-dependent DFT, based on GW or hybrid functional calculations. Particular attention is paid to overcome the side effects connected to finite size modeling. The editors are well known authorities in this field, and very knowledgeable of past developments as well as current advances. In turn, they have selected respected scientists as chapter authors to provide an expert view of the latest advances. The result is a clear overview of the connections and boundaries between these methods, as well as the broad criteria determining the choice between them for a given problem. Readers will find various correction schemes for the supercell model, a description of alternatives by applying embedding techniques, as well as algorithmic improvements allowing the treatment of an ever larger number of atoms at a high level of sophistication.

Book Defects in Nanocrystals

Download or read book Defects in Nanocrystals written by Sergio Pizzini and published by CRC Press. This book was released on 2020-05-11 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Defects in Nanocrystals: Structural and Physico-Chemical Aspects discusses the nature of semiconductor systems and the effect of the size and shape on their thermodynamic and optoelectronic properties at the mesoscopic and nanoscopic levels. The nanostructures considered in this book are individual nanometric crystallites, nanocrystalline films, and nanowires of which the thermodynamic, structural, and optical properties are discussed in detail. The work: Outlines the influence of growth processes on their morphology and structure Describes the benefits of optical spectroscopies in the understanding of the role and nature of defects in nanostructured semiconductors Considers the limits of nanothermodynamics Details the critical role of interfaces in nanostructural behavior Covers the importance of embedding media in the physico-chemical properties of nanostructured semiconductors Explains the negligible role of core point defects vs. surface and interface defects Written for researchers, engineers, and those working in the physical and physicochemical sciences, this work comprehensively details the chemical, structural, and optical properties of semiconductor nanostructures for the development of more powerful and efficient devices.

Book Ceramic Materials

Download or read book Ceramic Materials written by C. Barry Carter and published by Springer Science & Business Media. This book was released on 2013-01-04 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ceramic Materials: Science and Engineering is an up-to-date treatment of ceramic science, engineering, and applications in a single, comprehensive text. Building on a foundation of crystal structures, phase equilibria, defects, and the mechanical properties of ceramic materials, students are shown how these materials are processed for a wide diversity of applications in today's society. Concepts such as how and why ions move, how ceramics interact with light and magnetic fields, and how they respond to temperature changes are discussed in the context of their applications. References to the art and history of ceramics are included throughout the text, and a chapter is devoted to ceramics as gemstones. This course-tested text now includes expanded chapters on the role of ceramics in industry and their impact on the environment as well as a chapter devoted to applications of ceramic materials in clean energy technologies. Also new are expanded sets of text-specific homework problems and other resources for instructors. The revised and updated Second Edition is further enhanced with color illustrations throughout the text.

Book Defects in Advanced Electronic Materials and Novel Low Dimensional Structures

Download or read book Defects in Advanced Electronic Materials and Novel Low Dimensional Structures written by Jan Stehr and published by Woodhead Publishing. This book was released on 2018-06-29 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Defects in Advanced Electronic Materials and Novel Low Dimensional Structures provides a comprehensive review on the recent progress in solving defect issues and deliberate defect engineering in novel material systems. It begins with an overview of point defects in ZnO and group-III nitrides, including irradiation-induced defects, and then look at defects in one and two-dimensional materials, including carbon nanotubes and graphene. Next, it examines the ways that defects can expand the potential applications of semiconductors, such as energy upconversion and quantum processing. The book concludes with a look at the latest advances in theory. While defect physics is extensively reviewed for conventional bulk semiconductors, the same is far from being true for novel material systems, such as low-dimensional 1D and 0D nanostructures and 2D monolayers. This book fills that necessary gap. - Presents an in-depth overview of both conventional bulk semiconductors and low-dimensional, novel material systems, such as 1D structures and 2D monolayers - Addresses a range of defects in a variety of systems, providing a comparative approach - Includes sections on advances in theory that provide insights on where this body of research might lead

Book Defects In Functional Materials

Download or read book Defects In Functional Materials written by Chi-chung Francis Ling and published by World Scientific. This book was released on 2020-08-21 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: The research of functional materials has attracted extensive attention in recent years, and its advancement nitrifies the developments of modern sciences and technologies like green sciences and energy, aerospace, medical and health, telecommunications, and information technology. The present book aims to summarize the research activities carried out in recent years devoting to the understanding of the physics and chemistry of how the defects play a role in the electrical, optical and magnetic properties and the applications of the different functional materials in the fields of magnetism, optoelectronic, and photovoltaic etc.