EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Pilot Scale Demonstration of a Novel  Low Cost Oxygen Supply Process and Its Integration with Oxy Fuel Coal Fired Boilers

Download or read book Pilot Scale Demonstration of a Novel Low Cost Oxygen Supply Process and Its Integration with Oxy Fuel Coal Fired Boilers written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to achieve DOE targets for carbon dioxide capture, it is crucial not only to develop process options that will generate and provide oxygen to the power cycle in a cost-effective manner compared to the conventional oxygen supply methods based on cryogenic air separation technology, but also to identify effective integration options for these new technologies into the power cycle with carbon dioxide capture. The Linde/BOC developed Ceramic Autothermal Recovery (CAR) process remains an interesting candidate to address both of these issues by the transfer of oxygen from the air to a recycled CO2 rich flue-gas stream in a cyclic process utilizing the high temperature sorption properties of perovskites. Good progress was made on this technology in this project, but significant challenges remain to be addressed before CAR oxygen production technology is ready for commercial exploitation. Phase 1 of the project was completed by the end of September 2008. The two-bed 0.7 tons/day O2 CAR process development unit (PDU) was installed adjacent to WRI's pilot scale coal combustion test facility (CTF). Start-up and operating sequences for the PDU were developed and cyclic operation of the CAR process demonstrated. Controlled low concentration methane addition allowed the beds to be heated up to operational temperature (800-900 C) and then held there during cyclic operation of the 2-bed CAR process, in this way overcoming unavoidable heat losses from the beds during steady state operation. The performance of the PDU was optimized as much as possible, but equipment limitations prevented the system from fully achieving its target performance. Design of the flue gas recirculation system to integrate CAR PDU with the CTF and the system was completed and integrated tests successfully performed at the end of the period. A detailed techno-economic analysis was made of the CAR process for supplying the oxygen in oxy-fuel combustion retrofit option using AEP's 450 MW Conesville, Ohio plant and contrasted with the cryogenic air separation option (ASU). Design of a large scale CAR unit was completed to support this techno-economic assessment. Based on the finding that the overall cost potential of the CAR technology compared to cryogenic ASU is nominal at current performance levels and that the risks related to both material and process scale up are still significant, the team recommended not to proceed to Phase 2. CAR process economics continue to look attractive if the original and still 'realistic' target oxygen capacities could be realized in practice. In order to achieve this end, a new fundamental materials development program would be needed. With the effective oxygen capacities of the current CAR materials there is, however, insufficient economic incentive to use this commercially unproven technology in oxy-fuel power plant applications in place of conventional ASUs. In addition, it is now clear that before a larger scale pilot demonstration of the CAR technology is made, a better understanding of the impact of flue-gas impurities on the CAR materials and of thermal transients in the beds is required.

Book Adressenverzeichnis der beruflichen Schulen in Baden W  rttemberg

Download or read book Adressenverzeichnis der beruflichen Schulen in Baden W rttemberg written by and published by . This book was released on 1975 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Clean Coal Technologies for Power Generation

Download or read book Clean Coal Technologies for Power Generation written by P. Jayarama Reddy and published by CRC Press. This book was released on 2013-10-16 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses clean coal technology (CCT), the latest generation of coal technology that controls pollutants and performs with improved generating efficiency. CCT involves processes that effectively control emissions and result in highly efficient combustion without significantly contributing to global warming. Basic principles, operational a

Book Oxy fuel Combustion

    Book Details:
  • Author : Chuguang Zheng
  • Publisher : Academic Press
  • Release : 2017-09-14
  • ISBN : 0128123222
  • Pages : 386 pages

Download or read book Oxy fuel Combustion written by Chuguang Zheng and published by Academic Press. This book was released on 2017-09-14 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oxy-fuel Combustion: Fundamentals, Theory and Practice provides a comprehensive review of various aspects of oxy-fuel combustion technology, including its concept, fundamental theory, pilot practice, large-scale feasibility studies and related practical issues, such as the commissioning and operation of an oxy-fuel combustion plant. Oxy-fuel combustion, as the most practical large-scale carbon capture power generation technology, has attracted significant attention in the past two decades. As significant progress has been achieved in worldwide demonstration and the oxy-combustion concept confirmed by Schwartze Pump, CUIDEN, Callide, Ponferrada and Yingcheng projects in the past five years, this book provides a timely addition for discussion and study. Covers oxy-fuel combustion technology Includes concepts, fundamentals, pilots and large-scale feasibility studies Considers related practical issues, such as the commissioning and operation of an oxy-fuel combustion plant Focuses on theories and methods closely related to engineering practice

Book Studies in Advanced Oxy combustion Technologies

Download or read book Studies in Advanced Oxy combustion Technologies written by Fei Xia and published by . This book was released on 2014 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 2013, approximately 87 percent of the total world energy came from combustion sources. While combustion is of critical significance, it poses serious issues. The rapid increase in energy consumption, primarily from increased fossil fuel use, has raised strong concerns over the current energy infrastructure, the emissions of particulate matter, CO, SO2, and NOx, as well as global warming due to the emission of CO2. Improving combustion efficiency and reducing combustion emissions are essential. This dissertation focuses on two areas: (1) Computational fluid dynamics simulations of a novel burner design for a new oxy-fuel technology with relatively high efficiency and low emissions, and (2) numerical studies of flame structure and soot inception, interpreted in the carbon-to-oxygen atom ratio space for laminar diffusion flames. Part I. Oxy-fuel combustion is considered a promising technology for carbon capture, utilization, and storage (CCUS). One of the primary limitations on full-scale implementation of this technology is the significant increase in the cost of electricity due to a large reduction in plant efficiency and high capital costs. The fact that the CO2 captured must ultimately be pressurized for geo-sequestration or Enhanced Oil Recovery (EOR) enables pressurized oxy-combustion to be implemented at no net pumping cost because the energy to pump oxygen is comparable to that to pump CO2. At higher pressure the latent heat of condensation of the moisture in the flue gas can be utilized in the Rankine cycle, increasing the plant efficiency. A new pressurized oxy-combustion technology, namely staged, pressurized oxy-combustion (SPOC) has been developed in which the flue gas recycle is minimized by means of fuel-staged combustion. As determined through ASPEN Plus modeling, this process increases the net plant efficiency by more than 5 percentage points, compared to first-generation oxy-combustion plants. In the SPOC process, pulverized coal is combusted at high-pressure with negligible recycle. A unique burner and boiler have been designed via computational fluid dynamics (CFD) to effectively and safely burn coal under SPOC conditions. CFD is used to model the process and to determine the effects of operating conditions on the radiative and convective heat transfer in the boiler. It is shown through the simulations that a manageable wall heat flux can be achieved even with very high local gas temperatures. The system is also designed to minimize particle deposition to avoid slagging, fouling, and corrosion, and simulations of ash deposition indicate negligible deposition on the furnace wall. Radiation behavior is also studied to demonstrate radiative trapping effects. It is demonstrated, through both analytical and numerical studies, that the system pressurize is a critical tool to obtain an optically thick medium capable of trapping heat inside the furnace. It is further shown that for a sufficiently large optical thickness radiative trapping can occur, and this, combined with the diffusive-convective profiles of the temperature and absorption coefficient, allow us manage the wall heat flux. An average-temperature method is developed to approximate the heat flux and to study the dynamic relations of temperature and the absorption coefficient. The effects of ash particle size on radiative trapping are systematically studied. It is concluded that the wall heat flux is controlled by particle size as well as particle number concentration, in other words, by particle porosity and fragmentation. Ultimately, burners and boilers are designed to minimize the boiler heat transfer surface area, ash deposition, and fire-side corrosion for the SPOC system. Part II. Understanding the structure of diffusion flames is often complicated by the dependence of flame structure on the boundary conditions, such as composition, temperature, and flow field (e.g., strain rate in a counterflow flame.) The utility of interpreting flame results in the carbon-to-oxygen atom ratio (C/O ratio) space, as opposed to physical space or mixture fraction space, is evaluated. Flame and soot zone structures of counterflow diffusion flames are studied for C2H4 and C3H8 and interpreted in C/O ratio space as a function of the stoichiometric mixture fraction (Zst). The Burke-Schumann results expressed in C/O ratio space demonstrate how a clear and direct understanding of how structure is affected by Zst can be realized. In C/O ratio space, unlike physical or mixture fraction space, the flame location is independent of the stoichiometric mixture fraction. Numerical results with detailed chemical kinetics also indicate that C/O ratio space is a fundamental variable in the sense that, for a given fuel, the location of the flame zones and critical reactions is invariant with Zst and strain rate. Two zones are clearly observed, the radical pool zone and the soot precursor zone which is located on the fuel side of the flame. The onset threshold of soot precursors (C6H5 and C6H6) on the high temperature side of the soot precursor zone is characterized by the depletion of radicals. The role of the hydrogen radical in flame structure and soot inception is demonstrated by studying its production and consumption channels in C/O ratio space, as are the roles of C2H2 in soot precursor depletion and boundary coincidence. The kinetic ratio is used to study the characteristics of key chemical reactions and to identify regions of equilibrium for these reactions. Finally, a modified C/O ratio ((C/O)*) is given to interpret the physical meaning of C/O ratio. The numerical results in this work indicate and explain the advantages of applying C/O ratio space in the analysis of flame structure and soot precursor chemistry.

Book Characterization of Oxy combustion Impacts in Existing Coal fired Boilers

Download or read book Characterization of Oxy combustion Impacts in Existing Coal fired Boilers written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Oxy Fuel Combustion for Power Generation and Carbon Dioxide  CO2  Capture

Download or read book Oxy Fuel Combustion for Power Generation and Carbon Dioxide CO2 Capture written by L Zheng and published by Elsevier. This book was released on 2011-02-26 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oxy-fuel combustion is currently considered to be one of the major technologies for carbon dioxide (CO2) capture in power plants. The advantages of using oxygen (O2) instead of air for combustion include a CO2-enriched flue gas that is ready for sequestration following purification and low NOx emissions. This simple and elegant technology has attracted considerable attention since the late 1990s, rapidly developing from pilot-scale testing to industrial demonstration. Challenges remain, as O2 supply and CO2 capture create significant energy penalties that must be reduced through overall system optimisation and the development of new processes.Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture comprehensively reviews the fundamental principles and development of oxy-fuel combustion in fossil-fuel fired utility boilers. Following a foreword by Professor János M. Beér, the book opens with an overview of oxy-fuel combustion technology and its role in a carbon-constrained environment. Part one introduces oxy-fuel combustion further, with a chapter comparing the economics of oxy-fuel vs. post-/pre-combustion CO2 capture, followed by chapters on plant operation, industrial scale demonstrations, and circulating fluidized bed combustion. Part two critically reviews oxy-fuel combustion fundamentals, such as ignition and flame stability, burner design, emissions and heat transfer characteristics, concluding with chapters on O2 production and CO2 compression and purification technologies. Finally, part three explores advanced concepts and developments, such as near-zero flue gas recycle and high-pressure systems, as well as chemical looping combustion and utilisation of gaseous fuel.With its distinguished editor and internationally renowned contributors, Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture provides a rich resource for power plant designers, operators, and engineers, as well as academics and researchers in the field. - Comprehensively reviews the fundamental principles and development of oxy-fuel combustion in fossil-fuel fired utility boilers - Provides an overview of oxy-fuel combustion technology and its role in a carbon-constrained environment - Introduces oxy-fuel combustion comparing the economics of oxy-fuel vs. post-/pre-combustion CO2 capture

Book Development of Iron based Oxygen Carriers in Recyclability  Physical Strength and Toxicity tolerance for Coal direct Chemical Looping Combustion Systems

Download or read book Development of Iron based Oxygen Carriers in Recyclability Physical Strength and Toxicity tolerance for Coal direct Chemical Looping Combustion Systems written by Cheng Lung Chung and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation presents investigations of chemical looping technology as a transformative process for combustion of fossil fuels for power generation with CO2 capture. Specifically, the dissertation seeks to synthesize and characterize a low-cost iron-based oxygen carrier that can be employed in a commercial chemical looping combustion system with realistic material lifetime and adequate resistance to toxicity from pollutants from fossil fuels such as coal. Two secondary metal oxides (Al2O3 and TiO2) as support materials for Fe2O3 and their respective reaction-induced morphological changes are presented. A novel iron-based oxygen carrier was consequently identified to be sustainable over 3000 redox cycles in high temperatures (1000 °C) at the lab scale without chemical and physical degradation. Oxygen carrier of the same design also exhibited high resistance toward attrition from circulation and fluidization in two pilot-scale demonstration units under representative conditions. Tolerance of the active ingredients of the iron-based oxygen carriers against common toxic elements in the fossil fuel feedstock, such as alkaline and sulfur compounds from conversion of coal, through multiple fixed bed experiments under conditions representative of the counter-current moving bed reducer and thermogravimetric experiments up to 9000 ppm of H2S. The likelihood of agglomeration and interaction of alkaline metals (Na, K) with the iron-based oxygen carriers were found to be extremely low under normal operating conditions. Instead, proper distribution of coal was more crucial to avoid agglomeration caused by melting of SiO2. Sulfur deposition on iron-based oxygen carriers, although observed, was reversible through regeneration with air and did not result in degradation in the recyclability of the oxygen carriers. A potential pathway for sulfur emission via the combustor spent air was also identified. The sulfur emission and distribution of the Coal-Direct Chemical Looping (CDCL) 25 kWth sub-pilot unit which utilized the iron-based oxygen carriers was determined with a custom heat-traced gas sampling system. More than 69% of the total amount of atomic sulfur from high sulfur coal was converted to SO2 and H2S in the reducer flue gas stream while less than 5% was released as SO2 in the combustor spent air. The missing atomic sulfur in the balance was attributed to sulfur retained in coal ash as inorganic sulfur compounds. A flue gas clean-up system targeting both H2S and SO2 is therefore recommended to meet the quality of CO2-rich stream for transportation and sequestration in a commercial CDCL system. The projected sulfur emission in the combustor spent air was under the US EPA sulfur emission regulation safe to be released to the atmosphere without a costly acid removal system. The findings demonstrate the robustness of the CDCL system, together with the iron-based oxygen carriers, to handle high sulfur coal without severe performance and economic penalties.

Book Chemistry  Emission Control  Radioactive Pollution and Indoor Air Quality

Download or read book Chemistry Emission Control Radioactive Pollution and Indoor Air Quality written by Nicolas Mazzeo and published by BoD – Books on Demand. This book was released on 2011-07-27 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: The atmosphere may be our most precious resource. Accordingly, the balance between its use and protection is a high priority for our civilization. While many of us would consider air pollution to be an issue that the modern world has resolved to a greater extent, it still appears to have considerable influence on the global environment. In many countries with ambitious economic growth targets the acceptable levels of air pollution have been transgressed. Serious respiratory disease related problems have been identified with both indoor and outdoor pollution throughout the world. The 25 chapters of this book deal with several air pollution issues grouped into the following sections: a) air pollution chemistry; b) air pollutant emission control; c) radioactive pollution and d) indoor air quality.

Book Oxygen Enhanced Combustion

Download or read book Oxygen Enhanced Combustion written by Charles E. Baukal, Jr. and published by CRC Press. This book was released on 2010-12-12 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion - new technology producing oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include numerous environmental benefits as well as increased energy efficiency and productivity. The text compiles information about using oxygen to enhance high temperature industrial heating and melting processes - serving as a unique resource for specialists implementing the use of oxygen in combustion systems; combustion equipment and industrial gas suppliers; researchers; funding agencies for advanced combustion technologies; and agencies developing regulations for safe, efficient, and environmentally friendly combustion systems. Oxygen-Enhanced Combustion: Examines the fundamentals of using oxygen in combustion, pollutant emissions, oxygen production, and heat transfer Describes ferrous and nonferrous metals, glass, and incineration Discusses equipment, safety, design, and fuels Assesses recent trends including stricter environmental regulations, lower-cost methods of producing oxygen, improved burner designs, and increasing fuel costs Emphasizing applications and basic principles, this book will act as the primary resource for mechanical, chemical, aerospace, and environmental engineers and scientists; physical chemists; fuel technologists; fluid dynamists; and combustion design engineers. Topics include: General benefits Economics Potential problems Pollutant emissions Oxygen production Adsorption Air separation Heat transfer Ferrous metals Melting and refining processes Nonferrous metals Minerals Glass furnaces Incineration Safety Handling and storage Equipment design Flow controls Fuels

Book Handbook of Clean Energy Systems  6 Volume Set

Download or read book Handbook of Clean Energy Systems 6 Volume Set written by Jinyue Yan and published by John Wiley & Sons. This book was released on 2015-06-22 with total page 4038 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Clean Energy Systems brings together an international team of experts to present a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems. Consolidating information which is currently scattered across a wide variety of literature sources, the handbook covers a broad range of topics in this interdisciplinary research field including both fossil and renewable energy systems. The development of intelligent energy systems for efficient energy processes and mitigation technologies for the reduction of environmental pollutants is explored in depth, and environmental, social and economic impacts are also addressed. Topics covered include: Volume 1 - Renewable Energy: Biomass resources and biofuel production; Bioenergy Utilization; Solar Energy; Wind Energy; Geothermal Energy; Tidal Energy. Volume 2 - Clean Energy Conversion Technologies: Steam/Vapor Power Generation; Gas Turbines Power Generation; Reciprocating Engines; Fuel Cells; Cogeneration and Polygeneration. Volume 3 - Mitigation Technologies: Carbon Capture; Negative Emissions System; Carbon Transportation; Carbon Storage; Emission Mitigation Technologies; Efficiency Improvements and Waste Management; Waste to Energy. Volume 4 - Intelligent Energy Systems: Future Electricity Markets; Diagnostic and Control of Energy Systems; New Electric Transmission Systems; Smart Grid and Modern Electrical Systems; Energy Efficiency of Municipal Energy Systems; Energy Efficiency of Industrial Energy Systems; Consumer Behaviors; Load Control and Management; Electric Car and Hybrid Car; Energy Efficiency Improvement. Volume 5 - Energy Storage: Thermal Energy Storage; Chemical Storage; Mechanical Storage; Electrochemical Storage; Integrated Storage Systems. Volume 6 - Sustainability of Energy Systems: Sustainability Indicators, Evaluation Criteria, and Reporting; Regulation and Policy; Finance and Investment; Emission Trading; Modeling and Analysis of Energy Systems; Energy vs. Development; Low Carbon Economy; Energy Efficiencies and Emission Reduction. Key features: Comprising over 3,500 pages in 6 volumes, HCES presents a comprehensive overview of the latest research, developments and practical applications throughout all areas of clean energy systems, consolidating a wealth of information which is currently scattered across a wide variety of literature sources. In addition to renewable energy systems, HCES also covers processes for the efficient and clean conversion of traditional fuels such as coal, oil and gas, energy storage systems, mitigation technologies for the reduction of environmental pollutants, and the development of intelligent energy systems. Environmental, social and economic impacts of energy systems are also addressed in depth. Published in full colour throughout. Fully indexed with cross referencing within and between all six volumes. Edited by leading researchers from academia and industry who are internationally renowned and active in their respective fields. Published in print and online. The online version is a single publication (i.e. no updates), available for one-time purchase or through annual subscription.

Book Thermal Power Plants

    Book Details:
  • Author : Mohammad Rasul
  • Publisher : BoD – Books on Demand
  • Release : 2013-04-17
  • ISBN : 9535110950
  • Pages : 190 pages

Download or read book Thermal Power Plants written by Mohammad Rasul and published by BoD – Books on Demand. This book was released on 2013-04-17 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal power plants are one of the most important process industries for engineering professionals. Over the past decades, the power sector is facing a number of critical issues; however, the most fundamental challenge is meeting the growing power demand in sustainable and efficient ways. Practicing power plant engineers not only look after operation and maintenance of the plant, but, also look after range of activities including research and development, starting from power generation to environmental aspects of power plants. The book Thermal Power Plants - Advanced Applications introduces analysis of plant performance, energy efficiency, combustion, heat transfer, renewable power generation, catalytic reduction of dissolved oxygen and environmental aspects of combustion residues. This book addresses issues related to both coal fired and steam power plants. The book is suitable for both undergraduate and research higher degree students, and of course for practicing power plant engineers.

Book Developments and Innovation in Carbon Dioxide  CO2  Capture and Storage Technology

Download or read book Developments and Innovation in Carbon Dioxide CO2 Capture and Storage Technology written by M. Mercedes Maroto-Valer and published by Elsevier. This book was released on 2010-06-21 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon dioxide (CO2) capture and storage (CCS) is the one advanced technology that conventional power generation cannot do without. CCS technology reduces the carbon footprint of power plants by capturing and storing the CO2 emissions from burning fossil-fuels and biomass. This volume provides a comprehensive reference on the state of the art research, development and demonstration of carbon capture technology in the power sector and in industry. It critically reviews the range of post- and pre-combustion capture and combustion-based capture processes and technology applicable to fossil-fuel power plants, as well as applications of CCS in other high carbon footprint industries. Foreword written by Lord Oxburgh, Climate Science Peer Reviews the economics, regulation and planning of carbon capture and storage for power plants and industry Explores developments in combustion processes and technologies for CO2 capture in power plants

Book Oxidation Mechanisms of Materials for Heat Exchanging Components in CO2 H2O containing Gases Relevant to Oxy fuel Environments

Download or read book Oxidation Mechanisms of Materials for Heat Exchanging Components in CO2 H2O containing Gases Relevant to Oxy fuel Environments written by Tomasz Olszewski and published by Forschungszentrum Jülich. This book was released on 2012 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Acid Precipitation

    Book Details:
  • Author :
  • Publisher :
  • Release : 1993-07
  • ISBN :
  • Pages : 644 pages

Download or read book Acid Precipitation written by and published by . This book was released on 1993-07 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Carbon Dioxide Capture and Storage

    Book Details:
  • Author : Intergovernmental Panel on Climate Change. Working Group III.
  • Publisher : Cambridge University Press
  • Release : 2005-12-19
  • ISBN : 052186643X
  • Pages : 59 pages

Download or read book Carbon Dioxide Capture and Storage written by Intergovernmental Panel on Climate Change. Working Group III. and published by Cambridge University Press. This book was released on 2005-12-19 with total page 59 pages. Available in PDF, EPUB and Kindle. Book excerpt: IPCC Report on sources, capture, transport, and storage of CO2, for researchers, policy-makers and engineers.