EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Photoelectrochemical Water Splitting for Hydrogen Production Using III V Semiconductor Materials

Download or read book Photoelectrochemical Water Splitting for Hydrogen Production Using III V Semiconductor Materials written by Mahdi Mohammed Alqahtani and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of photoelectrochemical (PEC) water splitting to harvest intermittent solar sources in the form of hydrogen is an attractive potential method to address energy and environmental issues. Since 1972, when Honda and Fujishima demonstrated the use of titanium dioxide (TiO2) in PEC water splitting (1), extensive efforts have been devoted to the development of photoelectrode stability and high solar-to-hydrogen efficiency. Metal oxides (e.g. TiO2, Fe2O3, BiVO4, and SrTiO2) have been extensively studied but their large band gap and sluggish charge transfer kinetics typically limited their solar-to-hydrogen conversion efficiency (1-9). III-V semiconductor materials have proven attractive for PEC water splitting due to their high efficiency, optimal band gap, and excellent optical properties but they are readily susceptible to corrosion in strongly acidic or basic aqueous solutions during the PEC process (10-18). This thesis aims to construct a PEC device (e.g. photoanode and photocathode) based on III-V semiconductor materials (such as InGaN, GaP, and GaPSb) for PEC water splitting. The design of a direct PEC water splitting device requires a suitable band gap to cover the entire solar spectrum (visible range), which leads to a high photocurrent and solar-to-hydrogen (STH) efficiency. The band edge alignment must straddle the hydrogen and oxygen redox potentials and stable under illumination in electrolyte conditions (19). However, the current challenge is to develop efficient and stable solar-to-chemical conversion systems based on III-V semiconductor materials for PEC water splitting. This can be addressed by incorporating novel co-catalysts that are physically and electrically attached to the surface of the photoelectrodes. The role of the co-catalyst is to minimize the overpotentials and accelerate the charge kinetics at the semiconductor/electrolyte interface (20). Additionally, the surface modification strategy of applying co-catalysts can extend the stability of the photoelectrode for long-time operation (21-25).

Book Photoelectrochemical Water Splitting

Download or read book Photoelectrochemical Water Splitting written by H.- J. Lewerenz and published by Royal Society of Chemistry. This book was released on 2013 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been a resurgence of interest in light-induced water splitting as the search for storable carbon neutral energy becomes more urgent. Although the history of the basic idea dates back more than four decades, efficient, economical and stable integrated devices have yet to be realized. In the continuing quest for such devices, the field of photoelectrochemistry is entering a new phase where the extraordinary interdisciplinary of the research and development efforts are opening new avenues. This aspect of current research effort is reflected in the chapters of this book, which encompass present thinking in the various disciplines such as materials science, photo-electrochemistry and interfaces that can contribute to realization of viable solar fuel generators. This book presents a blend of the background science and recent advances in the field of photoelectrochemical water splitting, and includes aspects that point towards medium to long term future realization. The content of the book goes beyond the more traditional approaches to the subject by including topics such as novel excitation energy processes that have only been realized so far in advanced photonics. The comprehensive overview of current activities and development horizons provided by the impressive collection of internationally renowned authors therefore represents a unique reflection of current thinking regarding water splitting by light.

Book Photoelectrochemical Hydrogen Production

Download or read book Photoelectrochemical Hydrogen Production written by Roel van de Krol and published by Springer Science & Business Media. This book was released on 2011-11-09 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photoelectrochemical Hydrogen Production describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materials and devices, and combinatorial approaches towards the development of new materials. Finally, the economic and business perspectives of PEC devices are discussed, and promising future directions indicated. Photoelectrochemical Hydrogen Production is a one-stop resource for scientists, students and R&D practitioners starting in this field, providing both the theoretical background as well as useful practical information on photoelectrochemical measurement techniques. Experts in the field benefit from the chapters on current state-of-the-art materials/devices and future directions.

Book Photoelectrochemical Water Splitting

Download or read book Photoelectrochemical Water Splitting written by Inamuddin and published by Materials Research Forum LLC. This book was released on 2020-04-05 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photoelectrochemical (PEC) water splitting is a highly promising process for converting solar energy into hydrogen energy. The book presents new cutting-edge research findings in this field. Subjects covered include fabrication and characteristics of various electrode materials, cell design and strategies for enhancing the properties of PEC electrode materials. Keywords: Renewable Energy Sources, Solar Energy Conversion, Hydrogen Production, Photoelectrochemical Water Splitting, Electrode Materials for Water Splitting, Transition Metal Chalcogenide Electrodes, Narrow Bandgap Semiconductor Electrodes, Ti-based Electrode Materials, BiVO4 Photoanodes, Noble Electrode Materials, Cell Design for Water Splitting.

Book Photoelectrochemical Water Splitting

Download or read book Photoelectrochemical Water Splitting written by Zhebo Chen and published by Springer Science & Business Media. This book was released on 2013-08-28 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book outlines many of the techniques involved in materials development and characterization for photoelectrochemical (PEC) – for example, proper metrics for describing material performance, how to assemble testing cells and prepare materials for assessment of their properties, and how to perform the experimental measurements needed to achieve reliable results towards better scientific understanding. For each technique, proper procedure, benefits, limitations, and data interpretation are discussed. Consolidating this information in a short, accessible, and easy to read reference guide will allow researchers to more rapidly immerse themselves into PEC research and also better compare their results against those of other researchers to better advance materials development. This book serves as a “how-to” guide for researchers engaged in or interested in engaging in the field of photoelectrochemical (PEC) water splitting. PEC water splitting is a rapidly growing field of research in which the goal is to develop materials which can absorb the energy from sunlight to drive electrochemical hydrogen production from the splitting of water. The substantial complexity in the scientific understanding and experimental protocols needed to sufficiently pursue accurate and reliable materials development means that a large need exists to consolidate and standardize the most common methods utilized by researchers in this field.

Book Atomic and Nano Scale Materials for Advanced Energy Conversion  2 Volumes

Download or read book Atomic and Nano Scale Materials for Advanced Energy Conversion 2 Volumes written by Zongyou Yin and published by John Wiley & Sons. This book was released on 2022-04-18 with total page 887 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atomic and Nano Scale Materials for Advanced Energy Conversion Discover the latest advancements in energy conversion technologies used to develop modern sustainable energy techniques In Atomic and Nano Scale Materials for Advanced Energy Conversion, expert interdisciplinary researcher Dr. Zongyou Yin delivers a comprehensive overview of nano-to-atomic scale materials science, the development of advanced electrochemical, photochemical, photoelectrochemical, and photovoltaic energy conversion strategies, and the applications for sustainable water splitting and other technologies. The book offers readers cutting-edge information of two-dimensional nano, mixed-dimensional nano, nano rare earth, clusters, and single atoms. It constructively evaluates emerging nano-to-atomic scale energy conversion technologies for academic research and development (R&D) researchers and industrial technique consultants and engineers. The author sets out a systematic analysis of recent energy-conversion science, covering topics like adaptable manufacturing of Van der Waals heterojunctions, mixed-dimensional junctions, tandem structures, and superlattices. He also discusses function-oriented engineering in polymorphic phases, photon absorption, excitons-charges conversion, non-noble plasmonics, and solid-liquid-gas interactions. Readers will also benefit from: A thorough introduction to emerging nanomaterials for energy conversion, including electrochemical, photochemical, photoelectrochemical, and photovoltaic energy conversion An exploration of clusters for energy conversion, including electrochemical, photochemical, and photoelectrochemical clusters Practical discussions of single atoms for energy conversion in electrochemical, photochemical, and photoelectrochemical energy conversion technologies A thorough analysis of future perspectives and directions in advanced energy conversion technology Perfect for materials scientists, photochemists, electrochemists, and inorganic chemists, Atomic and Nano Scale Materials for Advanced Energy Conversion is also a must-read resource for catalytic chemists interested in the intersection of advanced chemistry and physics in energy conversion technologies.

Book Photochemical Water Splitting

Download or read book Photochemical Water Splitting written by Neelu Chouhan and published by CRC Press. This book was released on 2017-01-27 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cleavage of water to its constituents (i.e., hydrogen and oxygen) for production of hydrogen energy at an industrial scale is one of the "holy grails" of materials science. That can be done by utilizing the renewable energy resource i.e. sunlight and photocatalytic material. The sunlight and water are abundant and free of cost available at this planet. But the development of a stable, efficient and cost-effective photocatalytic material to split water is still a great challenge. To develop the effective materials for photocatalytic water splitting, various type of materials with different sizes and structures from nano to giant have been explored that includes metal oxides, metal chalcogenides, carbides, nitrides, phosphides, and so on. Fundamental concepts and state of art materials for the water splitting are also discussed to understand the phenomenon/mechanism behind the photoelectrochemical water splitting. This book gives a comprehensive overview and description of the manufacturing of photocatalytic materials and devices for water splitting by controlling the chemical composition, particle size, morphology, orientation and aspect ratios of the materials. The real technological breakthroughs in the development of the photoactive materials with considerable efficiency, are well conversed to bring out the practical aspects of the technique and its commercialization.

Book Photoelectrochemical Water Splitting

Download or read book Photoelectrochemical Water Splitting written by Inamuddin and published by Materials Research Forum LLC. This book was released on 2020-04-05 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photoelectrochemical (PEC) water splitting is a highly promising process for converting solar energy into hydrogen energy. The book presents new cutting-edge research findings in this field. Subjects covered include fabrication and characteristics of various electrode materials, cell design and strategies for enhancing the properties of PEC electrode materials. Keywords: Renewable Energy Sources, Solar Energy Conversion, Hydrogen Production, Photoelectrochemical Water Splitting, Electrode Materials for Water Splitting, Transition Metal Chalcogenide Electrodes, Narrow Bandgap Semiconductor Electrodes, Ti-based Electrode Materials, BiVO4 Photoanodes, Noble Electrode Materials, Cell Design for Water Splitting.

Book Encyclopedia of Sustainability Science and Technology

Download or read book Encyclopedia of Sustainability Science and Technology written by Robert A. Meyers and published by Springer. This book was released on 2012-09-30 with total page 12555 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Encyclopedia of Sustainability Science and Technology (ESST) addresses the grand challenge for science and engineering today. It provides unprecedented, peer-reviewed coverage in more than 550 separate entries comprising 38 topical sections. ESST establishes a foundation for the many sustainability and policy evaluations being performed in institutions worldwide. An indispensable resource for scientists and engineers in developing new technologies and for applying existing technologies to sustainability, the Encyclopedia of Sustainability Science and Technology is presented at the university and professional level needed for scientists, engineers, and their students to support real progress in sustainability science and technology. Although the emphasis is on science and technology rather than policy, the Encyclopedia of Sustainability Science and Technology is also a comprehensive and authoritative resource for policy makers who want to understand the scope of research and development and how these bottom-up innovations map on to the sustainability challenge.

Book Photoelectrochemical Water Splitting

Download or read book Photoelectrochemical Water Splitting written by Hans-Joachim Lewerenz and published by Royal Society of Chemistry. This book was released on 2013-10-02 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been a resurgence of interest in light-induced water splitting as the search for storable carbon neutral energy becomes more urgent. Although the history of the basic idea dates back more than four decades, efficient, economical and stable integrated devices have yet to be realized. In the continuing quest for such devices, the field of photoelectrochemistry is entering a new phase where the extraordinary interdisciplinary of the research and development efforts are opening new avenues. This aspect of current research effort is reflected in the chapters of this book, which encompass present thinking in the various disciplines such as materials science, photo-electrochemistry and interfaces that can contribute to realization of viable solar fuel generators. This book presents a blend of the background science and recent advances in the field of photoelectrochemical water splitting, and includes aspects that point towards medium to long term future realization. The content of the book goes beyond the more traditional approaches to the subject by including topics such as novel excitation energy processes that have only been realized so far in advanced photonics. The comprehensive overview of current activities and development horizons provided by the impressive collection of internationally renowned authors therefore represents a unique reflection of current thinking regarding water splitting by light.

Book Photoelectrochemical Hydrogen Generation

Download or read book Photoelectrochemical Hydrogen Generation written by Praveen Kumar and published by Springer Nature. This book was released on 2022-01-19 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the hydrogen fuel generation from water via photoelectrochemical process. It elaborates the theory and fundamental concepts of photoelectrochemistry to understand the photoelectrochemical process for water splitting to generate hydrogen fuel. The book further deliberates about the hydrogen as a futuristic chemical fuel to store solar energy in the form of chemical bonds and also as a renewable alternative to fossil fuels. The book establishes the need for hydrogen fuel and discusses the standards and practices used for solar driven photoelectrochemical water splitting. It also discusses the current and future status of the nanomaterials as efficient photoelectrodes for solar photoelectrochemical water splitting. The book will be of interest to the researchers, students, faculty, scientists, engineers, and technologists working in the domain of material science, energy harvesting, energy conversion, photo electrochemistry, nanomaterials for photo-electrochemical (PEC) cell, etc.

Book Engineering Catalysts and Interfaces for Improved Stability in Photoelectrochemical Water Splitting

Download or read book Engineering Catalysts and Interfaces for Improved Stability in Photoelectrochemical Water Splitting written by Micha Ben-Naim and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis describes efforts to improve the stability of photoelectrochemical (PEC) water splitting devices, studying new photoanode, photocathode, and catalyst materials and interfaces, supporting the use of PEC for renewable hydrogen generation. While renewable electricity sources like wind and solar power have become cost-competitive with fossil fuels, the inherent variability of these power sources limits their ability to completely displace fossil fuels for global energy production. Hydrogen offers promise as an energy carrier and intermediate, where energy could be stored chemically and hydrogen and then used in a range of applications (e.g. fuel cells for transportation). However, the stability of PEC water splitting systems is limited due to the challenges of stabilizing semiconductor materials, catalysts, and interfacial layers in corrosive electrolytes. This dissertation provides strategies to improve the stability of PEC water splitting systems by engineering catalysts and semiconductor-catalyst interfaces. First, we focus on electrocatalysts and photoanodes for water oxidation. We investigate the degradation mechanisms of thin-film SrIrO3, a high performance oxygen evolution reaction (OER) catalyst. Combining transmission electron microscopy to image the cross-sectional structure of the catalyst and secondary ion mass spectrometry run in a helium microscopy for lateral elemental mapping, we develop a 3D picture of the catalyst after accelerated degradation tests under OER operation. The SrIrO3 film becomes thinner and rougher but maintains a uniform lateral distribution of Sr and Ir, providing evidence for a layer-wise dissolution mechanism. We then develop a spin coating procedure to coat IrO¬¬x and biphasic strontium chloride/iridium oxide (SrCl2:IrOx) OER catalysts onto silicon for use as photoanodes. The SrCl2:IrOx photoanode produces 0.1 V more photovoltage than the IrO¬x photoanode due to an improved silicon-electrolyte interface, and post-test reveals film cracking and delamination as a primary degradation mode. The second part of this dissertation focuses on pairing MoS2 catalysts with single- and dual-junction III-V absorbers for stable photocathodes. We investigate a surface architecture for GaInP2 photocathodes consisting of an AlInP window layer (WL) to reduce surface recombination, a thin GaInP2 capping layer to protect the WL from corrosion, and an MoS2 catalyst. The MoS2/CL/WL/GaInP2 photocathode displays the highest PEC performance and most durability, producing current for > 125 h. By comparison, the MoS2/WL/GaInP2 photocathode degrades the fastest, likely due to the WL dissolving. In situ optical microscopy illustrates the progression of degradation during PEC testing. We then develop unassisted PEC water splitting devices pairing MoS2 catalysts with tandem III-V absorbers grown by inverted epitaxy, which allows for high-quality growth of non-lattice matched semiconductors. We compare the stability of GaInAsP/GaAs tandem devices coated with MoS2 or PtRu catalysts, and the MoS2-protected devices lasts 5 times as long as the PtRu-protected device. A MoS2/GaInP2/GaInAs device demonstrates an efficiency of 12.0%. Finally, we design a photoreactor platform for on-sun testing of PEC devices and demonstrate its use with a MoS2/GaInP2/GaAs tandem-absorber device. We demonstrate unassisted PEC water splitting under real world operating conditions using the sun as the illumination source and test the stability of the photoelectrodes under both sunny and partly cloudy conditions. The photoreactor setup and outdoor testing capabilities can accelerate the scale-up of PEC and other solar fuels technologies. This dissertation explores catalysts and semiconductor-catalyst interfaces in thin-film OER catalysts, silicon photoanodes, and III-V photocathodes and presents a diverse array of techniques to study degradation processes, from nanoscale microscopy and spectrometry to macroscale optical imaging. We also present a summary of stability in the field of PEC, illustrating the need for improved durability in these systems.

Book Photoelectrochemical Hydrogen Production

Download or read book Photoelectrochemical Hydrogen Production written by and published by . This book was released on 2011-11-09 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Photo  and Electro Catalytic Processes

Download or read book Photo and Electro Catalytic Processes written by Jianmin Ma and published by John Wiley & Sons. This book was released on 2022-01-25 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore green catalytic reactions with this reference from a renowned leader in the field Green reactions—like photo-, photoelectro-, and electro-catalytic reactions—offer viable technologies to solve difficult problems without significant damage to the environment. In particular, some gas-involved reactions are especially useful in the creation of liquid fuels and cost-effective products. In Photo- and Electro-Catalytic Processes: Water Splitting, N2 Fixing, CO2 Reduction, award-winning researcher Jianmin Ma delivers a comprehensive overview of photo-, electro-, and photoelectron-catalysts in a variety of processes, including O2 reduction, CO2 reduction, N2 reduction, H2 production, water oxidation, oxygen evolution, and hydrogen evolution. The book offers detailed information on the underlying mechanisms, costs, and synthetic methods of catalysts. Filled with authoritative and critical information on green catalytic processes that promise to answer many of our most pressing energy and environmental questions, this book also includes: Thorough introductions to electrocatalytic oxygen reduction and evolution reactions, as well as electrocatalytic hydrogen evolution reactions Comprehensive explorations of electrocatalytic water splitting, CO2 reduction, and N2 reduction Practical discussions of photoelectrocatalytic H2 production, water splitting, and CO2 reduction In-depth examinations of photoelectrochemical oxygen evolution and nitrogen reduction Perfect for catalytic chemists and photochemists, Photo- and Electro-Catalytic Processes: Water Splitting, N2 Fixing, CO2 Reduction also belongs in the libraries of materials scientists and inorganic chemists seeking a one-stop resource on the novel aspects of photo-, electro-, and photoelectro-catalytic reactions.

Book Solar to Chemical Conversion

Download or read book Solar to Chemical Conversion written by Hongqi Sun and published by John Wiley & Sons. This book was released on 2021-04-29 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive book systematically covers the fundamentals in solar energy conversion to chemicals, either fuels or chemical products. It includes natural photosynthesis with emphasis on artificial processes for solar energy conversion and utilization. The chemical processes of solar energy conversion via homogeneous and/or heterogeneous photocatalysis has been described with the mechanistic insights. It also consists of reaction systems toward a variety of applications, such as water splitting for hydrogen or oxygen evolution, photocatalytic CO2 reduction to fuels, and light driven N2 fixation, etc. This unique book offers the readers a broad view of solar energy utilization based on chemical processes and their perspectives for future sustainability.

Book Photoelectrochemical Solar Cells

Download or read book Photoelectrochemical Solar Cells written by Nurdan Demirci Sankir and published by John Wiley & Sons. This book was released on 2018-12-10 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overall view of the photoelectrochemical systems for solar hydrogen generation, and new and novel materials for photoelectrochemical solar cell applications. The book is organized in three parts. General concepts and photoelectrochemical systems are covered in Part I. Part II is devoted to photoactive materials for solar hydrogen generation. Main focus of the last part is the photoelectrochemical related systems. This part provides a diverse information about the implementation of multi-junctional solar cells in solar fuel generation systems, dye-sensitized solar hydrogen production and photocatalytic formation of photoactive semiconductors.

Book Water Electrolysis for Hydrogen Production

Download or read book Water Electrolysis for Hydrogen Production written by Pasquale Cavaliere and published by Springer Nature. This book was released on 2023-09-22 with total page 852 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a detailed description of hydrogen production through water electrolysis. It starts with the theoretical description of the chemical, thermodynamic, and kinetic issues related to the electrolysis of water. The main available technologies and the ones under development are detailed from a technical and a scientific point of view. At the end of the book Dr. Cavaliere describes the main hydrogen applications and their contribution to the grand energy transition that is expected by the middle of the century. The book also examines the economic issues related to the transition toward the hydrogen society.