EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Parametric Estimates by the Monte Carlo Method

Download or read book Parametric Estimates by the Monte Carlo Method written by G. A. Mikhailov and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-11-05 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: No detailed description available for "Parametric Estimates by the Monte Carlo Method".

Book Sequential Monte Carlo Methods in Practice

Download or read book Sequential Monte Carlo Methods in Practice written by Arnaud Doucet and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.

Book An Introduction to Sequential Monte Carlo

Download or read book An Introduction to Sequential Monte Carlo written by Nicolas Chopin and published by Springer Nature. This book was released on 2020-10-01 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a “Python corner,” which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.

Book Parametric Modeling in the Presence of Measurement Error  Monte Carlo Corrected Scores

Download or read book Parametric Modeling in the Presence of Measurement Error Monte Carlo Corrected Scores written by and published by . This book was released on 2000 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Parametric estimation is complicated when data are measured with error. The problem of regression modeling when one or more covariates are measured with error is considered in this paper. It is often the case that, evaluated at the observed error-prone data, the unbiased true-data estimating equations yield an inconsistent estimator. The proposed method is a variant of Nakamura's (1990) method of corrected scores and is closely related to the simulation-based algorithm introduced by Cook and Stefanski (1994). The corrected-score method depends critically on finding a function of the observed data having the property that its conditional expectation given the true data equals a true-data, unbiased score function. Nakamura (1990) gives corrected score functions for special cases, but offers no general solution. It is shown that for a certain class of smooth true-data score functions, a corrected score can be determined by Monte Carlo methods, if not analytically. The relationshipbetween the corrected score method and Cook and Stefanski's (1994) simulation method is studied in detail. The properties of the Monte Carlo generated corrected scorefunctions, and of the estimators they define, are also given considerable attention. Special cases are examined in detail, comparing the proposed method with establishedmethods.

Book New Monte Carlo Methods With Estimating Derivatives

Download or read book New Monte Carlo Methods With Estimating Derivatives written by Gennadij A. Michajlov and published by VSP. This book was released on 1995-01-01 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is possible to use weighted Monte Carlo methods for solving many problems of mathematical physics (boundary value problems for elliptic equations, the Boltzmann equation, radiation transfer and diffusion equations). Weight estimates make it possible to evaluate special functionals, for example, derivatives with respect to parameters of a problem. In this book new weak conditions are presented under which the corresponding vector Monte Carlo estimates are unbiased and their variances are finite. The author has also constructed new Monte Carlo methods for solving the Helmholz equation with a nonconstant parameter, including the stationary Schrodinger equation. New results for linear and nonlinear problems are also presented. Some methods of random function simulation are considered in the special appendix. A new method of substantiating and optimizing the reccurent Monte Carlo estimates without using the Neumann series is presented in the introduction.

Book Simulation and the Monte Carlo Method

Download or read book Simulation and the Monte Carlo Method written by Reuven Y. Rubinstein and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible new edition explores the major topics in Monte Carlo simulation Simulation and the Monte Carlo Method, Second Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over twenty-five years ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo Variance reduction techniques such as the transform likelihood ratio method and the screening method The score function method for sensitivity analysis The stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization The cross-entropy method to rare events estimation and combinatorial optimization Application of Monte Carlo techniques for counting problems, with an emphasis on the parametric minimum cross-entropy method An extensive range of exercises is provided at the end of each chapter, with more difficult sections and exercises marked accordingly for advanced readers. A generous sampling of applied examples is positioned throughout the book, emphasizing various areas of application, and a detailed appendix presents an introduction to exponential families, a discussion of the computational complexity of stochastic programming problems, and sample MATLAB programs. Requiring only a basic, introductory knowledge of probability and statistics, Simulation and the Monte Carlo Method, Second Edition is an excellent text for upper-undergraduate and beginning graduate courses in simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method.

Book Sequential Monte Carlo Methods for Nonlinear Discrete Time Filtering

Download or read book Sequential Monte Carlo Methods for Nonlinear Discrete Time Filtering written by Marcelo G. and published by Springer Nature. This book was released on 2022-06-01 with total page 87 pages. Available in PDF, EPUB and Kindle. Book excerpt: In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation. Table of Contents: Introduction / Bayesian Estimation of Static Vectors / The Stochastic Filtering Problem / Sequential Monte Carlo Methods / Sampling/Importance Resampling (SIR) Filter / Importance Function Selection / Markov Chain Monte Carlo Move Step / Rao-Blackwellized Particle Filters / Auxiliary Particle Filter / Regularized Particle Filters / Cooperative Filtering with Multiple Observers / Application Examples / Summary

Book Monte Carlo Methods in Bayesian Computation

Download or read book Monte Carlo Methods in Bayesian Computation written by Ming-Hui Chen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dealing with methods for sampling from posterior distributions and how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples, this book addresses such topics as improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches. The book presents an equal mixture of theory and applications involving real data, and is intended as a graduate textbook or a reference book for a one-semester course at the advanced masters or Ph.D. level. It will also serve as a useful reference for applied or theoretical researchers as well as practitioners.

Book Introducing Monte Carlo Methods with R

Download or read book Introducing Monte Carlo Methods with R written by Christian Robert and published by Springer Science & Business Media. This book was released on 2010 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.

Book Inverse Problem Theory and Methods for Model Parameter Estimation

Download or read book Inverse Problem Theory and Methods for Model Parameter Estimation written by Albert Tarantola and published by SIAM. This book was released on 2005-01-01 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: While the prediction of observations is a forward problem, the use of actual observations to infer the properties of a model is an inverse problem. Inverse problems are difficult because they may not have a unique solution. The description of uncertainties plays a central role in the theory, which is based on probability theory. This book proposes a general approach that is valid for linear as well as for nonlinear problems. The philosophy is essentially probabilistic and allows the reader to understand the basic difficulties appearing in the resolution of inverse problems. The book attempts to explain how a method of acquisition of information can be applied to actual real-world problems, and many of the arguments are heuristic.

Book Student Solutions Manual to accompany Simulation and the Monte Carlo Method  Student Solutions Manual

Download or read book Student Solutions Manual to accompany Simulation and the Monte Carlo Method Student Solutions Manual written by Dirk P. Kroese and published by John Wiley & Sons. This book was released on 2012-01-20 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible new edition explores the major topics in Monte Carlo simulation Simulation and the Monte Carlo Method, Second Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over twenty-five years ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo Variance reduction techniques such as the transform likelihood ratio method and the screening method The score function method for sensitivity analysis The stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization The cross-entropy method to rare events estimation and combinatorial optimization Application of Monte Carlo techniques for counting problems, with an emphasis on the parametric minimum cross-entropy method An extensive range of exercises is provided at the end of each chapter, with more difficult sections and exercises marked accordingly for advanced readers. A generous sampling of applied examples is positioned throughout the book, emphasizing various areas of application, and a detailed appendix presents an introduction to exponential families, a discussion of the computational complexity of stochastic programming problems, and sample MATLAB® programs. Requiring only a basic, introductory knowledge of probability and statistics, Simulation and the Monte Carlo Method, Second Edition is an excellent text for upper-undergraduate and beginning graduate courses in simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method.

Book Bayesian Filtering and Smoothing

Download or read book Bayesian Filtering and Smoothing written by Simo Särkkä and published by Cambridge University Press. This book was released on 2013-09-05 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.

Book Monte Carlo Simulation Based Statistical Modeling

Download or read book Monte Carlo Simulation Based Statistical Modeling written by Ding-Geng (Din) Chen and published by Springer. This book was released on 2017-02-01 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together expert researchers engaged in Monte-Carlo simulation-based statistical modeling, offering them a forum to present and discuss recent issues in methodological development as well as public health applications. It is divided into three parts, with the first providing an overview of Monte-Carlo techniques, the second focusing on missing data Monte-Carlo methods, and the third addressing Bayesian and general statistical modeling using Monte-Carlo simulations. The data and computer programs used here will also be made publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, and to readily apply them in their own research. Featuring highly topical content, the book has the potential to impact model development and data analyses across a wide spectrum of fields, and to spark further research in this direction.

Book Structured Database Monte Carlo  SDMC

Download or read book Structured Database Monte Carlo SDMC written by Gang Zhao and published by . This book was released on 2011 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: Monte Carlo (MC) simulation is a very general and flexible method for estimation of quantities of interest in stochastic models used in diverse areas of science and engineering. While the convergence rate of the method, by contrast to deterministic algorithms, does not grow with problem dimension and depends only on the number of random samples, its computational cost can be substantial due to the slow rate of convergence of the MC estimator. As a result, a large class of efficient Monte Carlo algorithms involves methods to reduce the variance of the MC estimator. They are referred to as Variance Reduction Techniques (VRTs). Most of these techniques cannot be generically applied and depend on special features of the specific estimation problems that need to be discovered by users one problem type at a time. In this thesis it is assumed that the estimation problem depends on a model or decision parameter. In this parametric setting a new class of efficient MC algorithms, called Structured Database Monte Carlo (SDMC), is introduced that can be generically used in a wide class of parametric estimation problems. The approach relies on computational learning at a nominal parameter value in order to gain efficiency when estimating at neighboring parameters and is based on the variance reduction technique of stratification. To analyze the convergence properties of the algorithm a novel connection between variance reduction techniques and the framework of Information Based Complexity (IBC) is established. It is shown that under some assumptions the SDMC algorithm achieves the optimal convergence rate. Additional optimal properties of the algorithm are established. Computational experiments are provided to illustrate the significant computational efficiencies that can be gained. Settings under which the direct application of the approach is not appropriate or effective are discussed and variants of the algorithm that can be used in these setting are presented. Extensions of the approach to problems where the perturbation is in model dynamics rather than model parameters are provided.

Book New Monte Carlo Methods With Estimating Derivatives

Download or read book New Monte Carlo Methods With Estimating Derivatives written by G. A. Mikhailov and published by Walter de Gruyter GmbH & Co KG. This book was released on 2023-02-14 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Conditional Monte Carlo

    Book Details:
  • Author : Michael C. Fu
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461562937
  • Pages : 411 pages

Download or read book Conditional Monte Carlo written by Michael C. Fu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conditional Monte Carlo: Gradient Estimation and Optimization Applications deals with various gradient estimation techniques of perturbation analysis based on the use of conditional expectation. The primary setting is discrete-event stochastic simulation. This book presents applications to queueing and inventory, and to other diverse areas such as financial derivatives, pricing and statistical quality control. To researchers already in the area, this book offers a unified perspective and adequately summarizes the state of the art. To researchers new to the area, this book offers a more systematic and accessible means of understanding the techniques without having to scour through the immense literature and learn a new set of notation with each paper. To practitioners, this book provides a number of diverse application areas that makes the intuition accessible without having to fully commit to understanding all the theoretical niceties. In sum, the objectives of this monograph are two-fold: to bring together many of the interesting developments in perturbation analysis based on conditioning under a more unified framework, and to illustrate the diversity of applications to which these techniques can be applied. Conditional Monte Carlo: Gradient Estimation and Optimization Applications is suitable as a secondary text for graduate level courses on stochastic simulations, and as a reference for researchers and practitioners in industry.