EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Overview of Computer Aided Engineering of Batteries and Introduction to Multi Scale  Multi Dimensional Modeling of Li Ion Batteries  Presentation

Download or read book Overview of Computer Aided Engineering of Batteries and Introduction to Multi Scale Multi Dimensional Modeling of Li Ion Batteries Presentation written by and published by . This book was released on 2012 with total page 37 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2012 Annual Merit Review presentation gives an overview of the Computer-Aided Engineering of Batteries (CAEBAT) project and introduces the Multi-Scale, Multi-Dimensional model for modeling lithium-ion batteries for electric vehicles.

Book Overview of Computer Aided Engineering of Batteries and Introduction to Multi Scale  Multi Dimensional Modeling of Li Ion Batteries  Presentation

Download or read book Overview of Computer Aided Engineering of Batteries and Introduction to Multi Scale Multi Dimensional Modeling of Li Ion Batteries Presentation written by and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2012 Annual Merit Review presentation gives an overview of the Computer-Aided Engineering of Batteries (CAEBAT) project and introduces the Multi-Scale, Multi-Dimensional model for modeling lithium-ion batteries for electric vehicles.

Book Overview of computer aided engineering of batteries and introduction to multi scale  multi dimensional modeling of Li lon batteries

Download or read book Overview of computer aided engineering of batteries and introduction to multi scale multi dimensional modeling of Li lon batteries written by and published by . This book was released on 2012 with total page 37 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computer Aided Engineering of Batteries

Download or read book Computer Aided Engineering of Batteries written by Shriram Santhanagopalan and published by Springer Nature. This book was released on 2023-03-14 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume, with contributions from the Computer Aided Engineering for Batteries (CAEBAT) program, provides firsthand insights into nuances of implementing battery models in actual geometries. It discusses practical examples and gaps in our understanding, while reviewing in depth the theoretical background and algorithms. Over the last ten years, several world-class academics, automotive original equipment manufacturers (OEMs), battery cell manufacturers and software developers worked together under an effort initiated by the U.S. Department of Energy to develop mature, validated modeling tools to simulate design, performance, safety and life of automotive batteries. Until recently, battery modeling was a niche focus area with a relatively small number of experts. This book opens up the research topic for a broader audience from industry and academia alike. It is a valuable resource for anyone who works on battery engineering but has limited hands-on experience with coding.

Book Multi Scale Multi Dimensional Li Ion Battery Model for Better Design and Management  Presentation

Download or read book Multi Scale Multi Dimensional Li Ion Battery Model for Better Design and Management Presentation written by and published by . This book was released on 2008 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The developed model used is to provide a better understanding and help answer engineering questions about improving the design, operational strategy, management, and safety of cells.

Book Multi Scale Multi Dimensional Li Ion Battery Model for Better Design and Management  Presentation

Download or read book Multi Scale Multi Dimensional Li Ion Battery Model for Better Design and Management Presentation written by and published by . This book was released on 2008 with total page 29 pages. Available in PDF, EPUB and Kindle. Book excerpt: The developed model used is to provide a better understanding and help answer engineering questions about improving the design, operational strategy, management, and safety of cells.

Book Multiscale Simulation Approach for Battery Production Systems

Download or read book Multiscale Simulation Approach for Battery Production Systems written by Malte Schönemann and published by Springer. This book was released on 2017-01-05 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Addressing the challenge of improving battery quality while reducing high costs and environmental impacts of the production, this book presents a multiscale simulation approach for battery production systems along with a software environment and an application procedure. Battery systems are among the most important technologies of the 21st century since they are enablers for the market success of electric vehicles and stationary energy storage solutions. However, the performance of batteries so far has limited possible applications. Addressing this challenge requires an interdisciplinary understanding of dynamic cause-effect relationships between processes, equipment, materials, and environmental conditions. The approach in this book supports the integrated evaluation of improvement measures and is usable for different planning horizons. It is applied to an exemplary battery cell production and module assembly in order to demonstrate the effectiveness and potential benefits of the simulation.

Book Accelerating Development of EV Batteries Through Computer Aided Engineering  Presentation

Download or read book Accelerating Development of EV Batteries Through Computer Aided Engineering Presentation written by and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Department of Energy's Vehicle Technology Program has launched the Computer-Aided Engineering for Automotive Batteries (CAEBAT) project to work with national labs, industry and software venders to develop sophisticated software. As coordinator, NREL has teamed with a number of companies to help improve and accelerate battery design and production. This presentation provides an overview ofCAEBAT, including its predictive computer simulation of Li-ion batteries known as the Multi-Scale Multi-Dimensional (MSMD) model framework. MSMD's modular, flexible architecture connects the physics of battery charge/discharge processes, thermal control, safety and reliability in a computationally efficient manner. This allows independent development of submodels at the cell and pack levels.

Book Modern Battery Engineering  A Comprehensive Introduction

Download or read book Modern Battery Engineering A Comprehensive Introduction written by Birke Peter Kai and published by World Scientific. This book was released on 2019-04-08 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This richly illustrated book written by Professor Kai Peter Birke and several co-authors addresses both scientific and engineering aspects of modern batteries in a unique way. Emphasizing the engineering part of batteries, the book acts as a compass towards next generation batteries for automotive and stationary applications. The book provides distinguished answers to still open questions on how future batteries look like.Modern Battery Engineering explains why and how batteries have to be designed for successful commercialization in e-mobility and stationary applications. The book will help readers understand the principle issues of battery designs, paving the way for engineers to avoid wrong paths and settle on appropriate cell technologies for next generation batteries. This book is ideal for training courses for readers interested in the field of modern batteries.

Book Lithium Ion Batteries

    Book Details:
  • Author : Yoshiaki Kato
  • Publisher : CRC Press
  • Release : 2019-04-05
  • ISBN : 0429521553
  • Pages : 285 pages

Download or read book Lithium Ion Batteries written by Yoshiaki Kato and published by CRC Press. This book was released on 2019-04-05 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-performance secondary batteries, also called rechargeable or storage batteries, are a key component of electric automobiles, power storage for renewable energies, load levellers of electric power lines, base stations for mobile phones, and emergency power supply in hospitals, in addition to having application in energy security and realization of a low-carbon and resilient society. A detailed understanding of the physics and chemistry that occur in secondary batteries is required for developing next-generation secondary batteries with improved performance. Among various types of secondary batteries, lithium-ion batteries are most widely used because of their high energy density, small memory effect, and low self-discharge rate. This book introduces lithium-ion batteries, with an emphasis on their overview, roadmaps, and simulations. It also provides extensive descriptions of ion beam analysis and prospects for in situ diagnostics of lithium-ion batteries. The chapters are written by specialists in cutting-edge research on lithium-ion batteries and related subjects. The book will be a great reference for advanced undergraduate- and graduate-level students, researchers, and engineers in electrochemistry, nanotechnology, and diagnostic methods and instruments.

Book 26th European Symposium on Computer Aided Process Engineering

Download or read book 26th European Symposium on Computer Aided Process Engineering written by and published by Elsevier. This book was released on 2016-06-17 with total page 2482 pages. Available in PDF, EPUB and Kindle. Book excerpt: 26th European Symposium on Computer Aided Process Engineering contains the papers presented at the 26th European Society of Computer-Aided Process Engineering (ESCAPE) Event held at Portorož Slovenia, from June 12th to June 15th, 2016. Themes discussed at the conference include Process-product Synthesis, Design and Integration, Modelling, Numerical analysis, Simulation and Optimization, Process Operations and Control and Education in CAPE/PSE. Presents findings and discussions from the 26th European Society of Computer-Aided Process Engineering (ESCAPE) Event

Book Multiscale Modeling of Degradation in Lithium ion Batteries

Download or read book Multiscale Modeling of Degradation in Lithium ion Batteries written by Fridolin Röder and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive methodology for multiscale simulation of degradation in lithium-ion batteries. The work helps to understand battery degradation processes by revealing complex multiscale effects, which cannot be taken into account by single-scale models. A novel numerical method is presented, which dynamically couples molecular models based on kinetic Monte Carlo method with macroscopic models. Moreover, the work provides mathematical models of degradation on various length scales, e.g. heterogeneous side reactions on molecular scale and the restructuring of particle size distributions on electrode scale. Instead of describing processes separately, the multiscale methodology systematically analyzes interaction of degradation processes and cell operation. The presented methodology is certainly applicable to other electrochemical systems with considerable multi-scale nature.

Book Design and Analysis of Large Lithium Ion Battery Systems

Download or read book Design and Analysis of Large Lithium Ion Battery Systems written by Shriram Santhanagopalan and published by Artech House. This book was released on 2014-12-01 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new resource provides you with an introduction to battery design and test considerations for large-scale automotive, aerospace, and grid applications. It details the logistics of designing a professional, large, Lithium-ion battery pack, primarily for the automotive industry, but also for non-automotive applications. Topics such as thermal management for such high-energy and high-power units are covered extensively, including detailed design examples. Every aspect of battery design and analysis is presented from a hands-on perspective. The authors work extensively with engineers in the field and this book is a direct response to frequently-received queries. With the authors’ unique expertise in areas such as battery thermal evaluation and design, physics-based modeling, and life and reliability assessment and prediction, this book is sure to provide you with essential, practical information on understanding, designing, and building large format Lithium-ion battery management systems.

Book Computer Aided Battery Engineering Consortium

Download or read book Computer Aided Battery Engineering Consortium written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A multi-national lab collaborative team was assembled that includes experts from academia and industry to enhance recently developed Computer-Aided Battery Engineering for Electric Drive Vehicles (CAEBAT)-II battery crush modeling tools and to develop microstructure models for electrode design - both computationally efficient. Task 1. The new Multi-Scale Multi-Domain model framework (GH-MSMD) provides 100x to 1,000x computation speed-up in battery electrochemical/thermal simulation while retaining modularity of particles and electrode-, cell-, and pack-level domains. The increased speed enables direct use of the full model in parameter identification. Task 2. Mechanical-electrochemical-thermal (MECT) models for mechanical abuse simulation were simultaneously coupled, enabling simultaneous modeling of electrochemical reactions during the short circuit, when necessary. The interactions between mechanical failure and battery cell performance were studied, and the flexibility of the model for various batteries structures and loading conditions was improved. Model validation is ongoing to compare with test data from Sandia National Laboratories. The ABDT tool was established in ANSYS. Task 3. Microstructural modeling was conducted to enhance next-generation electrode designs. This 3- year project will validate models for a variety of electrodes, complementing Advanced Battery Research programs. Prototype tools have been developed for electrochemical simulation and geometric reconstruction.

Book Model Order Reduction of Multi dimensional Partial Differential Equations for Electrochemical thermal Modeling of Large format Lithium ion Batteries

Download or read book Model Order Reduction of Multi dimensional Partial Differential Equations for Electrochemical thermal Modeling of Large format Lithium ion Batteries written by Guodong Fan and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Lithium ion batteries are considered the state of the art for energy storage in electric and hybrid vehicles. However, there are still several major challenges, such as battery safety, durability and cost, limiting the widespread application of Li-ion batteries in electrified vehicles. Understanding and predicting the chemical and physical processes in Li-ion cells is possible through multi-scale characterization methods. However, ``in-situ" quantification of such processes on a vehicle is not yet achievable due to the absence of direct measurements. Hence, high-fidelity, first-principles models are an essential investigation tool for the prediction of the battery performance and life. While such multi-scale, multi-dimensional first-principles models allow one to characterize the distribution of electrochemical and thermal properties within the cell, they require significant calibration effort and computation time, due to the presence of large scale coupled Partial Differential Equations (PDEs) and nonlinear algebraic equations, ultimately preventing their application to estimation and control algorithm design and verification. This dissertation presents the reduced order electrochemical-thermal models derived from first principles and suitable for real-time simulation, estimation and control design, through the systematic use of projection methods to achieve direct Model Order Reduction (MOR) from linear and nonlinear parabolic PDEs to low-order Ordinary Differential Equations (ODEs). The proposed methodology is applied to an electrochemical-thermal model for the simulation of large-scale Lithium ion battery cells. The resulting reduced-order multi-scale, multi-dimensional model is validated against numerical solutions and experimental data at various input current conditions. The physics-based, ultra-fast modeling tools developed within this research will enable accurate prediction of the electrochemical and thermal distributions within the battery cells, supporting simulation and analysis of performance and remaining usable life of the Li-ion batteries in electrified vehicles.

Book Advances in Lithium Ion Batteries for Electric Vehicles

Download or read book Advances in Lithium Ion Batteries for Electric Vehicles written by Haifeng Dai and published by Elsevier. This book was released on 2024-02-26 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Lithium-Ion Batteries for Electric Vehicles: Degradation Mechanism, Health Estimation, and Lifetime Prediction examines the electrochemical nature of lithium-ion batteries, including battery degradation mechanisms and how to manage the battery state of health (SOH) to meet the demand for sustainable development of electric vehicles. With extensive case studies, methods and applications, the book provides practical, step-by-step guidance on battery tests, degradation mechanisms, and modeling and management strategies. The book begins with an overview of Li-ion battery aging and battery aging tests before discussing battery degradation mechanisms and methods for analysis. Further methods are then presented for battery state of health estimation and battery lifetime prediction, providing a range of case studies and techniques. The book concludes with a thorough examination of lifetime management strategies for electric vehicles, making it an essential resource for students, researchers, and engineers needing a range of approaches to tackle battery degradation in electric vehicles. Evaluates the cause of battery degradation from the material level to the cell level Explains key battery basic lifetime test methods and strategies Presents advanced technologies of battery state of health estimation