EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book One Dimensional Detonation Wave Stability Analysis

Download or read book One Dimensional Detonation Wave Stability Analysis written by Ali Hassan Omar and published by . This book was released on 1992 with total page 70 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Stability Analysis of a One dimensional ZND Detonation Wave

Download or read book A Stability Analysis of a One dimensional ZND Detonation Wave written by William Edward Hartung and published by . This book was released on 1964 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Calculation of Linear Detonation Instability

Download or read book Calculation of Linear Detonation Instability written by H. I. Lee and published by . This book was released on 1988 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book One Dimensional Stability of Detonation Waves

Download or read book One Dimensional Stability of Detonation Waves written by Gregory D. Lyng and published by . This book was released on 2002 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Shock Waves Science and Technology Library  Vol  6

Download or read book Shock Waves Science and Technology Library Vol 6 written by F. Zhang and published by Springer Science & Business Media. This book was released on 2012-03-28 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily concerned with the fundamental theory of detonation physics in gaseous and condensed phase reactive media. The detonation process involves complex chemical reaction and fluid dynamics, accompanied by intricate effects of heat, light, electricity and magnetism - a contemporary research field that has found wide applications in propulsion and power, hazard prevention as well as military engineering. The seven extensive chapters contained in this volume are: - Chemical Equilibrium Detonation (S Bastea and LE Fried) - Steady One-Dimensional Detonations (A Higgins) - Detonation Instability (HD Ng and F Zhang) - Dynamic Parameters of Detonation (AA Vasiliev) - Multi-Scaled Cellular Detonation (D Desbordes and HN Presles) - Condensed Matter Detonation: Theory and Practice (C Tarver) - Theory of Detonation Shock Dynamics (JB Bdzil and DS Stewart) The chapters are thematically interrelated in a systematic descriptive approach, though, each chapter is self-contained and can be read independently from the others. It offers a timely reference of theoretical detonation physics for graduate students as well as professional scientists and engineers.

Book Instability of Steady and Quasi steady Detonations

Download or read book Instability of Steady and Quasi steady Detonations written by Brian D. Taylor and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The stability properties and dynamic behavior of steady and quasi-steady detonation theories are investigated through linear stability analysis and numerical simulation. A general, unsteady, three-dimensional formulation of the reactive Euler equations in a shock-fitted reference frame is derived. The formulation is specialized to three configurations: planar one-dimensional detonation, radially symmetric one-dimensional detonation, and two-dimensional detonation in a rectangular channel. High-order convergent numerical simulation schemes for these configurations are derived and used to study the linear and nonlinear stability of detonations. Shock-fitted numerical simulation is used to study the two-dimensional instability of steady solutions to the Zel'dovich, von Neumann, and Doring (ZND) model of detonation. It is demonstrated through several methods of analysis that the dependence of instability growth rates and oscillation frequencies on the initial disturbance wavelength, as predicted by linear stability theory, is quantitatively reproduced by shock-fitted simulations. Agreement with the theorized temporal and spatial structure of the instability is demonstrated by a functional expansion of the solution perturbations, obtained from simulation data, in terms of the linear stability eigenfunctions. Three regimes of unstable behavior - linear, weakly non-linear, and fully non-linear - are explored and characterized in terms of the power spectrum of the normal detonation velocity. Using solutions obtained from Detonation Shock Dynamics (DSD) theory, the behavior of cylindrically and spherically expanding symmetric detonations is studied by one-dimensional shock-fitted numerical simulation. We consider idealized models of gaseous and condensed phase detonation, as well as a realistic model calibrated for the high explosive PBX-9501. We study the behavior of detonations initialized with solutions of DSD as they expand radially. The various models and calibrations exhibit regimes of hydrodynamic stability, in which the detonation evolves slowly in time and agreement with DSD theory is good, and regimes of instability, which in some cases leads to failure of the detonation wave.

Book Shock Waves Science and Technology Library  Vol  6

Download or read book Shock Waves Science and Technology Library Vol 6 written by F. Zhang and published by Springer Science & Business Media. This book was released on 2012-03-19 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily concerned with the fundamental theory of detonation physics in gaseous and condensed phase reactive media. The detonation process involves complex chemical reaction and fluid dynamics, accompanied by intricate effects of heat, light, electricity and magnetism - a contemporary research field that has found wide applications in propulsion and power, hazard prevention as well as military engineering. The seven extensive chapters contained in this volume are: - Chemical Equilibrium Detonation (S Bastea and LE Fried) - Steady One-Dimensional Detonations (A Higgins) - Detonation Instability (HD Ng and F Zhang) - Dynamic Parameters of Detonation (AA Vasiliev) - Multi-Scaled Cellular Detonation (D Desbordes and HN Presles) - Condensed Matter Detonation: Theory and Practice (C Tarver) - Theory of Detonation Shock Dynamics (JB Bdzil and DS Stewart) The chapters are thematically interrelated in a systematic descriptive approach, though, each chapter is self-contained and can be read independently from the others. It offers a timely reference of theoretical detonation physics for graduate students as well as professional scientists and engineers.

Book Assessment of Numerical Issues in One dimensional Detonation Wave Representation

Download or read book Assessment of Numerical Issues in One dimensional Detonation Wave Representation written by Ramanan Sankaran and published by . This book was released on 2000 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical study of detonation stabilization by finite length ramps

Download or read book Numerical study of detonation stabilization by finite length ramps written by and published by . This book was released on 2002 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Nesta dissertação apresentam-se os resultados de um estudo numérico da interação entre uma onda de detonação oblíqua forte estabilizada pela rampa de um diedro e o leque expansão gerado pela deflexão da superfície do diedro. Neste estudo foi utilizado um código numérico que resolve asequações que governam o escoamento de uma mistura reativa de hidrogênio e ar. Estas equações são discretizadas por um procedimento do tipo volumes finitos centrado na célula de cálculo, segundo um esquema que leva em contaas velocidades características do escoamento. A presença de ondas de choque e detonação requer o uso de procedimentos de adaptação de malha. Neste trabalho procedimentos de enriquecimento e empobrecimento de malha são usados, o primeiro para melhorar a resolução das regiões do escoamento nas quais ocorrem grandes gradientes das propriedades, enquanto o segundo para retirar pontos da malha em locais onde os gradientes são pequenos. Mostra-se que este procedimento de empobrecimento, desenvolvido neste trabalho, resulta em ganhos no tempo de processamento. Na determinação dos parâmetros que levem a obter ondas do tipo Chapman-Jouguet como resultado da interação, inicialmente é realizada uma análisequase uni-dimensional baseada nos diagramas das polares de detonação e nos diagramas do tempo de indução da mistura reativa. Em seguida, os resultados das simulações numéricas mostram que a obtenção de uma detonação do tipo Chapman-Jouguet é possível para valores intermediáriosdo ângulo diedro, dentro da faixa das detonações estáveis. Quando o ângulo do diedro é próximo ao ângulo máximo permitido para detonações estáveis obteve-se o desacoplamento da onda de detonação, com a subsequente extinção do processo de combustão.

Book Toward Detonation Theory

Download or read book Toward Detonation Theory written by Anatoly N. Dremin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is known that the Chapman-Jouguet theory of detonation is based on the assumption of an instantaneous and complete transformation of explosives into detonation products in the wave front. Therefore, one should not expect from the theory any interpretations of the detonation limits, such as shock initiation of det onation and kinetic instability and propagation (failure diameter). The Zeldovich-Von Neuman-Doring (ZND) theory of detonation appeared, in fact, as a response to the need for a theory capable of interpreting such limits, and the ZND detonation theory gave qualitative interpretations to the detonation limits. These interpretations were based essentially on the theoretical notion that the mechanism of explosives transformation at detonation is a combustion of a layer of finite thickness of shock-compressed explosive behind the wave shock front with the velocity of the front. However, some experimental findings turned out to be inconsistent with the the ory. A very small change of homogeneous (liquid) explosives detonation velocity with explosive charge diameter near the rather sizable failure diameter is one of the findings. The elucidation of the nature of this finding has led to the discovery of a new phenomenon. This phenomenon has come to be known as the breakdown (BD) of the explosive self-ignition behind the front of shock waves under the effect of rarefaction waves.

Book The Structure and Stability of Three Dimensional Detonation Waves

Download or read book The Structure and Stability of Three Dimensional Detonation Waves written by and published by . This book was released on 1990 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Numerical Computation of One dimensional Detonation Waves

Download or read book The Numerical Computation of One dimensional Detonation Waves written by Adriaan Cornelis Berkenbosch and published by . This book was released on 1994 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book One dimensional Dense Fluid Detonation

Download or read book One dimensional Dense Fluid Detonation written by Mohamed Safwat I. Abdelazim and published by . This book was released on 1982 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Gaseous Detonation Physics and Its Universal Framework Theory

Download or read book Gaseous Detonation Physics and Its Universal Framework Theory written by Zonglin Jiang and published by Springer Nature. This book was released on 2022-12-16 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the theories and research progress in gaseous detonation research, and proposes a universal framework theory that overcomes the current research limitations. Gaseous detonation is an extremely fast type of combustion that propagates at supersonic speed in premixed combustible gas. Being self-sustaining and self-organizing with the unique nature of pressure gaining, gaseous detonation and its gas dynamics has been an interdisciplinary frontier for decades. The research of detonation enjoyed its early success from the development of the CJ theory and ZND modeling, but phenomenon is far from being understood quantitatively, and the development of theories to predict the three-dimensional cellular structure remains a formidable task, being essentially a problem in high-speed compressible reacting flow. This theory proposed by the authors’ research group breaks down the limitation of the one-dimensional steady flow hypothesis of the early theories, successfully correlating the propagation and initiation processes of gaseous detonation, and realizing the unified expression of the three-dimensional structure of cell detonation. The book and the proposed open framework is of high value for researchers in conventional applications such as coal mine explosions and chemical plant accidents, and state-of-the-art research fields such as supernova explosion, new aerospace propulsion engines, and detonation-driven hypersonic testing facilities. It is also a driving force for future research of detonation.

Book The Detonation Phenomenon

Download or read book The Detonation Phenomenon written by John H. S. Lee and published by Cambridge University Press. This book was released on 2008-06-30 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the detonation phenomenon in explosives. It is ideal for engineers and graduate students with a background in thermodynamics and fluid mechanics. The material is mostly qualitative, aiming to illustrate the physical aspects of the phenomenon. Classical idealized theories of detonation waves are presented first. These permit detonation speed, gas properties ahead of and behind the detonation wave, and the distribution of fluid properties within the detonation wave itself to be determined. Subsequent chapters describe in detail the real unstable structure of a detonation wave. One-, two-, and three-dimensional computer simulations are presented along with experimental results using various experimental techniques. The important effects of confinement and boundary conditions and their influence on the propagation of a detonation are also discussed. The final chapters cover the various ways detonation waves can be formed and provide a review of the outstanding problems and future directions in detonation research.

Book Weakly Nonlinear Dynamics of Near CJ Detonation Waves

Download or read book Weakly Nonlinear Dynamics of Near CJ Detonation Waves written by and published by . This book was released on 1993 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt: The renewed interest in safety issues for large scale industrial devices and in high speed combustion has driven recent intense efforts to gain a deeper theoretical understanding of detonation wave dynamics. Linear stability analyses, weakly nonlinear bifurcation calculations as well as full scale multi-dimensional direct numerical simulations have been pursued for a standard model problem based on the reactive Euler equations for an ideal gas with constant specific heat capacities and simplified chemical reaction models. Most of these studies are concerned with overdriven detonations. This is true despite the fact that the majority of all detonations observed in nature are running at speeds close to the Chapman-Jouguet (CJ) limit value. By focusing on overdriven waves one removes an array of difficulties from the analysis that is associated with the sonic flow conditions in the wake of a CJ-detonation. In particular, the proper formulation of downstream boundary conditions in the CJ-case is a yet unsolved analytical problem. A proper treatment of perturbations in the back of a Chapman-Jouguet detonation has to account for two distinct weakly nonlinear effects in the forward acoustic wave component. The first is a nonlinear interactionof highly temperature sensitive chemistry with the forward acoustic wave component in a transonic boundary layer near the end of the reaction zone. The second is a cumulative three-wave-resonance in the sense of Majda et al. which is active in the near-sonic burnt gas flow and which is essentially independent of the details of the chemical model. In this work, we consider detonations in mixtures with moderate state sensitivity of the chemical reactions. Then, the acoustic perturbations do not influence the chemistry at the order considered and we may concentrate on the second effect; the three-wave resonance.

Book The Formation  Propagation and Stability of Self Sustained Detonation Waves in Gaseous Mixtures  Condensed Phase Explosives and Media With Hydraulic Resistance

Download or read book The Formation Propagation and Stability of Self Sustained Detonation Waves in Gaseous Mixtures Condensed Phase Explosives and Media With Hydraulic Resistance written by Victor Gorshkov and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: