EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Djairo G  de Figueiredo   Selected Papers

Download or read book Djairo G de Figueiredo Selected Papers written by Djairo G. de Figueiredo and published by Springer Science & Business Media. This book was released on 2014-01-07 with total page 733 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a collection of selected papers by the prominent Brazilian mathematician Djairo G. de Figueiredo, who has made significant contributions in the area of Differential Equations and Analysis. His work has been highly influential as a challenge and inspiration to young mathematicians as well as in development of the general area of analysis in his home country of Brazil. In addition to a large body of research covering a variety of areas including geometry of Banach spaces, monotone operators, nonlinear elliptic problems and variational methods applied to differential equations, de Figueiredo is known for his many monographs and books. Among others, this book offers a sample of the work of Djairo, as he is commonly addressed, advancing the study of superlinear elliptic problems (both scalar and system cases), including questions on critical Sobolev exponents and maximum principles for non-cooperative elliptic systems in Hamiltonian form.

Book Regularity Theory for Quasilinear Elliptic Systems and Monge   Ampere Equations in Two Dimensions

Download or read book Regularity Theory for Quasilinear Elliptic Systems and Monge Ampere Equations in Two Dimensions written by Friedmar Schulz and published by Springer. This book was released on 2006-12-08 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes have been written as an introduction to the characteristic theory for two-dimensional Monge-Ampère equations, a theory largely developed by H. Lewy and E. Heinz which has never been presented in book form. An exposition of the Heinz-Lewy theory requires auxiliary material which can be found in various monographs, but which is presented here, in part because the focus is different, and also because these notes have an introductory character. Self-contained introductions to the regularity theory of elliptic systems, the theory of pseudoanalytic functions and the theory of conformal mappings are included. These notes grew out of a seminar given at the University of Kentucky in the fall of 1988 and are intended for graduate students and researchers interested in this area.

Book Linear and Quasilinear Elliptic Equations

Download or read book Linear and Quasilinear Elliptic Equations written by Olʹga Aleksandrovna Ladyzhenskai︠a︡ and published by . This book was released on 1968 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Elliptic Systems of Phase Transition Type

Download or read book Elliptic Systems of Phase Transition Type written by Nicholas D. Alikakos and published by Springer. This book was released on 2019-01-21 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the vector Allen-Cahn equation, which models coexistence of three or more phases and is related to Plateau complexes – non-orientable objects with a stratified structure. The minimal solutions of the vector equation exhibit an analogous structure not present in the scalar Allen-Cahn equation, which models coexistence of two phases and is related to minimal surfaces. The 1978 De Giorgi conjecture for the scalar problem was settled in a series of papers: Ghoussoub and Gui (2d), Ambrosio and Cabré (3d), Savin (up to 8d), and del Pino, Kowalczyk and Wei (counterexample for 9d and above). This book extends, in various ways, the Caffarelli-Córdoba density estimates that played a major role in Savin's proof. It also introduces an alternative method for obtaining pointwise estimates. Key features and topics of this self-contained, systematic exposition include: • Resolution of the structure of minimal solutions in the equivariant class, (a) for general point groups, and (b) for general discrete reflection groups, thus establishing the existence of previously unknown lattice solutions. • Preliminary material beginning with the stress-energy tensor, via which monotonicity formulas, and Hamiltonian and Pohozaev identities are developed, including a self-contained exposition of the existence of standing and traveling waves. • Tools that allow the derivation of general properties of minimizers, without any assumptions of symmetry, such as a maximum principle or density and pointwise estimates. • Application of the general tools to equivariant solutions rendering exponential estimates, rigidity theorems and stratification results. This monograph is addressed to readers, beginning from the graduate level, with an interest in any of the following: differential equations – ordinary or partial; nonlinear analysis; the calculus of variations; the relationship of minimal surfaces to diffuse interfaces; or the applied mathematics of materials science.

Book Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane

Download or read book Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane written by Kari Astala and published by Princeton University Press. This book was released on 2008-12-29 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.

Book Partial Differential Equations and the Calculus of Variations

Download or read book Partial Differential Equations and the Calculus of Variations written by COLOMBINI and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Italian school of Mathematical Analysis has long and glo rious traditions. In the last thirty years it owes very much to the scientific pre-eminence of Ennio De Giorgi, Professor of Mathemati cal Analysis at the Scuola Normale Superiore di Pisa. His fundamental theorems in Calculus of Variations, in Minimal Surfaces Theory, in Partial Differential Equations, in Axiomatic Set Theory as well as the fertility of his mind to discover both general mathematical structures and techniques which frame many different problems, and profound and meaningful examples which show the limits of a theory and give origin to new results and theories, makes him an absolute reference point for all Italian mathematicians, and a well-known and valued personage in the international mathematical world. We have been students of Ennio de Giorgi. Now, we are glad to present to him, together with all his collegues, friends and former students, these Essays of Mathematical Analysis written in his hon our on the occasion of his sixtieth birthday (February 8th, 1988), with our best wishes and our thanks for all he gave in the past and will give us in the future. We have added to the research papers of this book the text of a conversation with Ennio De Giorgi about the diffusion and the communication of science and, in particular, of Mathematics.

Book Regularity Problem for Quasilinear Elliptic and Parabolic Systems

Download or read book Regularity Problem for Quasilinear Elliptic and Parabolic Systems written by Alexander Koshelev and published by Springer. This book was released on 2006-11-14 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: The smoothness of solutions for quasilinear systems is one of the most important problems in modern mathematical physics. This book deals with regular or strong solutions for general quasilinear second-order elliptic and parabolic systems. Applications in solid mechanics, hydrodynamics, elasticity and plasticity are described. The results presented are based on two main ideas: the universal iterative method, and explicit, sometimes sharp, coercivity estimates in weighted spaces. Readers are assumed to have a standard background in analysis and PDEs.

Book Partial Differential Equations of Elliptic Type

Download or read book Partial Differential Equations of Elliptic Type written by C. Miranda and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the theory of partial differential equations, the study of elliptic equations occupies a preeminent position, both because of the importance which it assumes for various questions in mathematical physics, and because of the completeness of the results obtained up to the present time. In spite of this, even in the more classical treatises on analysis the theory of elliptic equations has been considered and illustrated only from particular points of view, while the only expositions of the whole theory, the extremely valuable ones by LICHTENSTEIN and AscoLI, have the charac ter of encyclopedia articles and date back to many years ago. Consequently it seemed to me that it would be of some interest to try to give an up-to-date picture of the present state of research in this area in a monograph which, without attaining the dimensions of a treatise, would nevertheless be sufficiently extensive to allow the expo sition, in some cases in summary form, of the various techniques used in the study of these equations.

Book Systems of Nonlinear Partial Differential Equations

Download or read book Systems of Nonlinear Partial Differential Equations written by J.M. Ball and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of a NATO/London Mathematical Society Advanced Study Institute held in Oxford from 25 July - 7 August 1982. The institute concerned the theory and applications of systems of nonlinear partial differential equations, with emphasis on techniques appropriate to systems of more than one equation. Most of the lecturers and participants were analysts specializing in partial differential equations, but also present were a number of numerical analysts, workers in mechanics, and other applied mathematicians. The organizing committee for the institute was J.M. Ball (Heriot-Watt), T.B. Benjamin (Oxford), J. Carr (Heriot-Watt), C.M. Dafermos (Brown), S. Hildebrandt (Bonn) and J.S. pym (Sheffield) . The programme of the institute consisted of a number of courses of expository lectures, together with special sessions on different topics. It is a pleasure to thank all the lecturers for the care they took in the preparation of their talks, and S.S. Antman, A.J. Chorin, J.K. Hale and J.E. Marsden for the organization of their special sessions. The institute was made possible by financial support from NATO, the London Mathematical Society, the u.S. Army Research Office, the u.S. Army European Research Office, and the u.S. National Science Foundation. The lectures were held in the Mathematical Institute of the University of Oxford, and residential accommodation was provided at Hertford College.

Book Boundary value Problems with Free Boundaries for Elliptic Systems of Equations

Download or read book Boundary value Problems with Free Boundaries for Elliptic Systems of Equations written by Valentin Nikolaevich Monakhov and published by American Mathematical Soc.. This book was released on 1983 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with certain classes of nonlinear problems for elliptic systems of partial differential equations: boundary-value problems with free boundaries. The first part has to do with the general theory of boundary-value problems for analytic functions and its applications to hydrodynamics. The second presents the theory of quasiconformal mappings, along with the theory of boundary-value problems for elliptic systems of equations and applications of it to problems in the mechanics of continuous media with free boundaries: problems in subsonic gas dynamics, filtration theory, and problems in elastico-plasticity.

Book Strongly Coupled Parabolic and Elliptic Systems

Download or read book Strongly Coupled Parabolic and Elliptic Systems written by Dung Le and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-11-05 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Strongly coupled (or cross-diffusion) systems of parabolic and elliptic partial differential equations appear in many physical applications. This book presents a new approach to the solvability of general strongly coupled systems, a much more difficult problem in contrast to the scalar case, by unifying, elucidating and extending breakthrough results obtained by the author, and providing solutions to many open fundamental questions in the theory. Several examples in mathematical biology and ecology are also included. Contents Interpolation Gagliardo–Nirenberg inequalities The parabolic systems The elliptic systems Cross-diffusion systems of porous media type Nontrivial steady-state solutions The duality RBMO(μ)–H1(μ)| Some algebraic inequalities Partial regularity

Book Convex Analysis and Nonlinear Geometric Elliptic Equations

Download or read book Convex Analysis and Nonlinear Geometric Elliptic Equations written by Ilya J. Bakelman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Investigations in modem nonlinear analysis rely on ideas, methods and prob lems from various fields of mathematics, mechanics, physics and other applied sciences. In the second half of the twentieth century many prominent, ex emplary problems in nonlinear analysis were subject to intensive study and examination. The united ideas and methods of differential geometry, topology, differential equations and functional analysis as well as other areas of research in mathematics were successfully applied towards the complete solution of com plex problems in nonlinear analysis. It is not possible to encompass in the scope of one book all concepts, ideas, methods and results related to nonlinear analysis. Therefore, we shall restrict ourselves in this monograph to nonlinear elliptic boundary value problems as well as global geometric problems. In order that we may examine these prob lems, we are provided with a fundamental vehicle: The theory of convex bodies and hypersurfaces. In this book we systematically present a series of centrally significant results obtained in the second half of the twentieth century up to the present time. Particular attention is given to profound interconnections between various divisions in nonlinear analysis. The theory of convex functions and bodies plays a crucial role because the ellipticity of differential equations is closely connected with the local and global convexity properties of their solutions. Therefore it is necessary to have a sufficiently large amount of material devoted to the theory of convex bodies and functions and their connections with partial differential equations.

Book Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems   AM 105   Volume 105

Download or read book Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems AM 105 Volume 105 written by Mariano Giaquinta and published by Princeton University Press. This book was released on 2016-03-02 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: The description for this book, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105, will be forthcoming.

Book Elliptic Systems in the Plane

Download or read book Elliptic Systems in the Plane written by Wolfgang L. Wendland and published by Pitman Publishing. This book was released on 1979 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Stability Theory of Differential Equations

Download or read book Stability Theory of Differential Equations written by Richard Bellman and published by Courier Corporation. This book was released on 2013-02-20 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduates and graduate students, this was the first English-language text to offer detailed coverage of boundedness, stability, and asymptotic behavior of linear and nonlinear differential equations. It remains a classic guide, featuring material from original research papers, including the author's own studies. The linear equation with constant and almost-constant coefficients receives in-depth attention that includes aspects of matrix theory. No previous acquaintance with the theory is necessary, since author Richard Bellman derives the results in matrix theory from the beginning. In regard to the stability of nonlinear systems, results of the linear theory are used to drive the results of Poincaré and Liapounoff. Professor Bellman then surveys important results concerning the boundedness, stability, and asymptotic behavior of second-order linear differential equations. The final chapters explore significant nonlinear differential equations whose solutions may be completely described in terms of asymptotic behavior. Only real solutions of real equations are considered, and the treatment emphasizes the behavior of these solutions as the independent variable increases without limit.

Book Direct Methods In The Calculus Of Variations

Download or read book Direct Methods In The Calculus Of Variations written by Enrico Giusti and published by World Scientific. This book was released on 2003-01-15 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive discussion on the existence and regularity of minima of regular integrals in the calculus of variations and of solutions to elliptic partial differential equations and systems of the second order. While direct methods for the existence of solutions are well known and have been widely used in the last century, the regularity of the minima was always obtained by means of the Euler equation as a part of the general theory of partial differential equations. In this book, using the notion of the quasi-minimum introduced by Giaquinta and the author, the direct methods are extended to the regularity of the minima of functionals in the calculus of variations, and of solutions to partial differential equations. This unified treatment offers a substantial economy in the assumptions, and permits a deeper understanding of the nature of the regularity and singularities of the solutions. The book is essentially self-contained, and requires only a general knowledge of the elements of Lebesgue integration theory.

Book Approximation Methods in Optimization of Nonlinear Systems

Download or read book Approximation Methods in Optimization of Nonlinear Systems written by Peter I. Kogut and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-12-02 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: The monograph addresses some problems particularly with regard to ill-posedness of boundary value problems and problems where we cannot expect to have uniqueness of their solutions in the standard functional spaces. Bringing original and previous results together, it tackles computational challenges by exploiting methods of approximation and asymptotic analysis and harnessing differences between optimal control problems and their underlying PDEs