EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Functional Analysis  Sobolev Spaces and Partial Differential Equations

Download or read book Functional Analysis Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Book Linear and Nonlinear Waves

Download or read book Linear and Nonlinear Waves written by G. B. Whitham and published by John Wiley & Sons. This book was released on 2011-10-18 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in an accessible paperback edition, this classic work is just as relevant as when it first appeared in 1974, due to the increased use of nonlinear waves. It covers the behavior of waves in two parts, with the first part addressing hyperbolic waves and the second addressing dispersive waves. The mathematical principles are presented along with examples of specific cases in communications and specific physical fields, including flood waves in rivers, waves in glaciers, traffic flow, sonic booms, blast waves, and ocean waves from storms.

Book Partial Differential Equations

Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Book Introduction to Partial Differential Equations

Download or read book Introduction to Partial Differential Equations written by Peter J. Olver and published by Springer Science & Business Media. This book was released on 2013-11-08 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.

Book Handbook of Nonlinear Partial Differential Equations

Download or read book Handbook of Nonlinear Partial Differential Equations written by Andrei D. Polyanin and published by CRC Press. This book was released on 2004-06-02 with total page 835 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Nonlinear Partial Differential Equations is the latest in a series of acclaimed handbooks by these authors and presents exact solutions of more than 1600 nonlinear equations encountered in science and engineering--many more than any other book available. The equations include those of parabolic, hyperbolic, elliptic and other types, and the authors pay special attention to equations of general form that involve arbitrary functions. A supplement at the end of the book discusses the classical and new methods for constructing exact solutions to nonlinear equations. To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the equations in increasing order of complexity. Highlights of the Handbook:

Book Finite Difference Methods for Ordinary and Partial Differential Equations

Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Book Partial Differential Equations

Download or read book Partial Differential Equations written by Lawrence C. Evans and published by American Mathematical Soc.. This book was released on 2010 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail...Evans' book is evidence of his mastering of the field and the clarity of presentation (Luis Caffarelli, University of Texas) It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations ...Every graduate student in analysis should read it. (David Jerison, MIT) I use Partial Differential Equations to prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's ...I am very happy with the preparation it provides my students. (Carlos Kenig, University of Chicago) Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge ...An outstanding reference for many aspects of the field. (Rafe Mazzeo, Stanford University.

Book Handbook of Linear Partial Differential Equations for Engineers and Scientists

Download or read book Handbook of Linear Partial Differential Equations for Engineers and Scientists written by Andrei D. Polyanin and published by CRC Press. This book was released on 2001-11-28 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: Following in the footsteps of the authors' bestselling Handbook of Integral Equations and Handbook of Exact Solutions for Ordinary Differential Equations, this handbook presents brief formulations and exact solutions for more than 2,200 equations and problems in science and engineering. Parabolic, hyperbolic, and elliptic equations with

Book Partial Differential Equations

Download or read book Partial Differential Equations written by Michael Shearer and published by Princeton University Press. This book was released on 2015-03-01 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors

Book Partial Differential Relations

Download or read book Partial Differential Relations written by Misha Gromov and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical theory of partial differential equations is rooted in physics, where equations (are assumed to) describe the laws of nature. Law abiding functions, which satisfy such an equation, are very rare in the space of all admissible functions (regardless of a particular topology in a function space). Moreover, some additional (like initial or boundary) conditions often insure the uniqueness of solutions. The existence of these is usually established with some apriori estimates which locate a possible solution in a given function space. We deal in this book with a completely different class of partial differential equations (and more general relations) which arise in differential geometry rather than in physics. Our equations are, for the most part, undetermined (or, at least, behave like those) and their solutions are rather dense in spaces of functions. We solve and classify solutions of these equations by means of direct (and not so direct) geometric constructions. Our exposition is elementary and the proofs of the basic results are selfcontained. However, there is a number of examples and exercises (of variable difficulty), where the treatment of a particular equation requires a certain knowledge of pertinent facts in the surrounding field. The techniques we employ, though quite general, do not cover all geometrically interesting equations. The border of the unexplored territory is marked by a number of open questions throughout the book.

Book Partial Differential Equations of Mathematical Physics

Download or read book Partial Differential Equations of Mathematical Physics written by S. L. Sobolev and published by Courier Corporation. This book was released on 1964-01-01 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.

Book Handbook of Functional Equations

Download or read book Handbook of Functional Equations written by Themistocles M. Rassias and published by Springer. This book was released on 2014-11-21 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook consists of seventeen chapters written by eminent scientists from the international mathematical community, who present important research works in the field of mathematical analysis and related subjects, particularly in the Ulam stability theory of functional equations. The book provides an insight into a large domain of research with emphasis to the discussion of several theories, methods and problems in approximation theory, analytic inequalities, functional analysis, computational algebra and applications. The notion of stability of functional equations has its origins with S. M. Ulam, who posed the fundamental problem for approximate homomorphisms in 1940 and with D. H. Hyers, Th. M. Rassias, who provided the first significant solutions for additive and linear mappings in 1941 and 1978, respectively. During the last decade the notion of stability of functional equations has evolved into a very active domain of mathematical research with several applications of interdisciplinary nature. The chapters of this handbook focus mainly on both old and recent developments on the equation of homomorphism for square symmetric groupoids, the linear and polynomial functional equations in a single variable, the Drygas functional equation on amenable semigroups, monomial functional equation, the Cauchy–Jensen type mappings, differential equations and differential operators, operational equations and inclusions, generalized module left higher derivations, selections of set-valued mappings, D’Alembert’s functional equation, characterizations of information measures, functional equations in restricted domains, as well as generalized functional stability and fixed point theory.

Book Introduction to the Theory of Entire Functions of Several Variables

Download or read book Introduction to the Theory of Entire Functions of Several Variables written by Lev Isaakovich Ronkin and published by American Mathematical Soc.. This book was released on 1974 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Principles of Partial Differential Equations

Download or read book Principles of Partial Differential Equations written by Alexander Komech and published by Springer Science & Business Media. This book was released on 2009-10-05 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise book covers the classical tools of Partial Differential Equations Theory in today’s science and engineering. The rigorous theoretical presentation includes many hints, and the book contains many illustrative applications from physics.

Book Introduction to Partial Differential Equations with Applications

Download or read book Introduction to Partial Differential Equations with Applications written by E. C. Zachmanoglou and published by Courier Corporation. This book was released on 2012-04-20 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.

Book Introduction To Second Order Partial Differential Equations  An  Classical And Variational Solutions

Download or read book Introduction To Second Order Partial Differential Equations An Classical And Variational Solutions written by Doina Cioranescu and published by World Scientific Publishing Company. This book was released on 2017-11-27 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book extensively introduces classical and variational partial differential equations (PDEs) to graduate and post-graduate students in Mathematics. The topics, even the most delicate, are presented in a detailed way. The book consists of two parts which focus on second order linear PDEs. Part I gives an overview of classical PDEs, that is, equations which admit strong solutions, verifying the equations pointwise. Classical solutions of the Laplace, heat, and wave equations are provided. Part II deals with variational PDEs, where weak (variational) solutions are considered. They are defined by variational formulations of the equations, based on Sobolev spaces. A comprehensive and detailed presentation of these spaces is given. Examples of variational elliptic, parabolic, and hyperbolic problems with different boundary conditions are discussed.

Book A First Course in Partial Differential Equations

Download or read book A First Course in Partial Differential Equations written by H. F. Weinberger and published by Courier Corporation. This book was released on 2012-04-20 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for advanced undergraduate and graduate students, this text presents the general properties of partial differential equations, including the elementary theory of complex variables. Solutions. 1965 edition.