EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Galois Theory

    Book Details:
  • Author : Emil Artin
  • Publisher :
  • Release : 2020-02
  • ISBN : 9781950217021
  • Pages : 54 pages

Download or read book Galois Theory written by Emil Artin and published by . This book was released on 2020-02 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author Emil Artin is known as one of the greatest mathematicians of the 20th century. He is regarded as a man who gave a modern outlook to Galois theory. Original lectures by the master. This emended edition is with completely new typesetting and corrections. The free PDF file available on the publisher's website www.bowwowpress.org

Book Lectures on the Philosophy of Mathematics

Download or read book Lectures on the Philosophy of Mathematics written by Joel David Hamkins and published by MIT Press. This book was released on 2021-03-09 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the philosophy of mathematics grounded in mathematics and motivated by mathematical inquiry and practice. In this book, Joel David Hamkins offers an introduction to the philosophy of mathematics that is grounded in mathematics and motivated by mathematical inquiry and practice. He treats philosophical issues as they arise organically in mathematics, discussing such topics as platonism, realism, logicism, structuralism, formalism, infinity, and intuitionism in mathematical contexts. He organizes the book by mathematical themes--numbers, rigor, geometry, proof, computability, incompleteness, and set theory--that give rise again and again to philosophical considerations.

Book Introduction to Algebraic Geometry

Download or read book Introduction to Algebraic Geometry written by Serge Lang and published by Courier Dover Publications. This book was released on 2019-03-20 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Author Serge Lang defines algebraic geometry as the study of systems of algebraic equations in several variables and of the structure that one can give to the solutions of such equations. The study can be carried out in four ways: analytical, topological, algebraico-geometric, and arithmetic. This volume offers a rapid, concise, and self-contained introductory approach to the algebraic aspects of the third method, the algebraico-geometric. The treatment assumes only familiarity with elementary algebra up to the level of Galois theory. Starting with an opening chapter on the general theory of places, the author advances to examinations of algebraic varieties, the absolute theory of varieties, and products, projections, and correspondences. Subsequent chapters explore normal varieties, divisors and linear systems, differential forms, the theory of simple points, and algebraic groups, concluding with a focus on the Riemann-Roch theorem. All the theorems of a general nature related to the foundations of the theory of algebraic groups are featured.

Book Algebra of Analysis

Download or read book Algebra of Analysis written by Karl Menger and published by . This book was released on 1944 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Foundations of Galois Theory

Download or read book Foundations of Galois Theory written by M.M. Postnikov and published by Elsevier. This book was released on 2014-07-10 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foundations of Galois Theory is an introduction to group theory, field theory, and the basic concepts of abstract algebra. The text is divided into two parts. Part I presents the elements of Galois Theory, in which chapters are devoted to the presentation of the elements of field theory, facts from the theory of groups, and the applications of Galois Theory. Part II focuses on the development of general Galois Theory and its use in the solution of equations by radicals. Equations that are solvable by radicals; the construction of equations solvable by radicals; and the unsolvability by radicals of the general equation of degree n ? 5 are discussed as well. Mathematicians, physicists, researchers, and students of mathematics will find this book highly useful.

Book Galois Theory for Beginners

Download or read book Galois Theory for Beginners written by Jörg Bewersdorff and published by American Mathematical Soc.. This book was released on 2006 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Galois theory is the culmination of a centuries-long search for a solution to the classical problem of solving algebraic equations by radicals. This book follows the historical development of the theory, emphasizing concrete examples along the way. It is suitable for undergraduates and beginning graduate students.

Book Elliptic Partial Differential Equations

Download or read book Elliptic Partial Differential Equations written by Qing Han and published by American Mathematical Soc.. This book was released on 2011 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is based on PDE courses given by the authors at the Courant Institute and at the University of Notre Dame, Indiana. Presented are basic methods for obtaining various a priori estimates for second-order equations of elliptic type with particular emphasis on maximal principles, Harnack inequalities, and their applications. The equations considered in the book are linear; however, the presented methods also apply to nonlinear problems.

Book Isaac Newton on Mathematical Certainty and Method

Download or read book Isaac Newton on Mathematical Certainty and Method written by Niccolo Guicciardini and published by MIT Press. This book was released on 2011-08-19 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: An analysis of Newton's mathematical work, from early discoveries to mature reflections, and a discussion of Newton's views on the role and nature of mathematics. Historians of mathematics have devoted considerable attention to Isaac Newton's work on algebra, series, fluxions, quadratures, and geometry. In Isaac Newton on Mathematical Certainty and Method, Niccolò Guicciardini examines a critical aspect of Newton's work that has not been tightly connected to Newton's actual practice: his philosophy of mathematics. Newton aimed to inject certainty into natural philosophy by deploying mathematical reasoning (titling his main work The Mathematical Principles of Natural Philosophy most probably to highlight a stark contrast to Descartes's Principles of Philosophy). To that end he paid concerted attention to method, particularly in relation to the issue of certainty, participating in contemporary debates on the subject and elaborating his own answers. Guicciardini shows how Newton carefully positioned himself against two giants in the “common” and “new” analysis, Descartes and Leibniz. Although his work was in many ways disconnected from the traditions of Greek geometry, Newton portrayed himself as antiquity's legitimate heir, thereby distancing himself from the moderns. Guicciardini reconstructs Newton's own method by extracting it from his concrete practice and not solely by examining his broader statements about such matters. He examines the full range of Newton's works, from his early treatises on series and fluxions to the late writings, which were produced in direct opposition to Leibniz. The complex interactions between Newton's understanding of method and his mathematical work then reveal themselves through Guicciardini's careful analysis of selected examples. Isaac Newton on Mathematical Certainty and Method uncovers what mathematics was for Newton, and what being a mathematician meant to him.

Book A Course in Galois Theory

Download or read book A Course in Galois Theory written by D. J. H. Garling and published by Cambridge University Press. This book was released on 1986 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook, based on lectures given over a period of years at Cambridge, is a detailed and thorough introduction to Galois theory.

Book A Book of Abstract Algebra

Download or read book A Book of Abstract Algebra written by Charles C Pinter and published by Courier Corporation. This book was released on 2010-01-14 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.

Book Algebra with Galois Theory

Download or read book Algebra with Galois Theory written by Emil Artin and published by American Mathematical Soc.. This book was released on 2007 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Algebra with Galois Theory' is based on lectures by Emil Artin. The book is an ideal textbook for instructors and a supplementary or primary textbook for students.

Book  Mathesis of the Mind

Download or read book Mathesis of the Mind written by David W. Wood and published by Brill Rodopi. This book was released on 2012 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first major study in any language on J.G. Fichte's philosophy of mathematics and theory of geometry. It investigates both the external formal and internal cognitive parallels between the axioms, intuitions and constructions of geometry and the scientific methodology of the Fichtean system of philosophy. In contrast to "ordinary" Euclidean geometry, in his "Erlanger Logik "of 1805 Fichte posits a model of an "ursprungliche" or original geometry - that is to say, a synthetic and constructivistic conception grounded in ideal archetypal elements that are grasped through geometrical or intelligible intuition. Accordingly, this study classifies Fichte's philosophy of mathematics as a whole as a species of mathematical Platonism or neo-Platonism, and concludes that the "Wissenschaftslehre "itself may be read as an attempt at a new philosophical mathesis, or "mathesis of the mind." "This work testifies to the author's exact and extensive knowledge of the Fichtean texts, as well as of the philosophical, scientific and historical contexts. Wood has opened up completely new paths for Fichte research, and examines with clarity and precision a domain that up to now has hardly been researched." Professor Dr. Marco Ivaldo (University of Naples) "This study, written in a language distinguished by its limpidity and precision, and constantly supported by a close reading of the Fichtean texts and secondary literature, furnishes highly detailed and convincing demonstrations. In directly confronting the difficult historical relationship between the "Wissenschaftslehre "and mathematics, the author has broken new ground that is at once stimulating, decidedly innovative, and elegantly audacious." Professor Dr. Emmanuel Cattin (Universite Blaise-Pascal, Clermont-Ferrand)

Book An Introduction to Nonassociative Algebras

Download or read book An Introduction to Nonassociative Algebras written by Richard D. Schafer and published by Courier Dover Publications. This book was released on 2017-11-15 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise graduate-level introductory study presents some of the important ideas and results in the theory of nonassociative algebras. Places particular emphasis on alternative and (commutative) Jordan algebras. 1966 edition.

Book Lectures on the Geometry of Manifolds

Download or read book Lectures on the Geometry of Manifolds written by Liviu I. Nicolaescu and published by World Scientific. This book was released on 2007 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.The book's guiding philosophy is, in the words of Newton, that ?in learning the sciences examples are of more use than precepts?. We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue.While we present most of the local aspects of classical differential geometry, the book has a ?global and analytical bias?. We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincar‚ duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-;Bonnet theorem.We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand H”lder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators.The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight.

Book Constructing the World

Download or read book Constructing the World written by David J. Chalmers and published by OUP Oxford. This book was released on 2012-10-04 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: David Chalmers develops a picture of reality on which all truths can be derived from a limited class of basic truths. The picture is inspired by Rudolf Carnap's construction of the world in Der Logische Aufbau Der Welt. Carnap's Aufbau is often seen as a noble failure, but Chalmers argues that a version of the project can succeed. With the right basic elements and the right derivation relation, we can indeed construct the world. The focal point of Chalmers' project is scrutability: the thesis that ideal reasoning from a limited class of basic truths yields all truths about the world. Chalmers first argues for the scrutability thesis and then considers how small the base can be. The result is a framework in "metaphysical epistemology": epistemology in service of a global picture of the world. The scrutability framework has ramifications throughout philosophy. Using it, Chalmers defends a broadly Fregean approach to meaning, argues for an internalist approach to the contents of thought, and rebuts W.V. Quine's arguments against the analytic and the a priori. He also uses scrutability to analyze the unity of science, to defend a sort of conceptual metaphysics, and to mount a structuralist response to skepticism. Based on Chalmers's 2010 John Locke lectures, Constructing the World opens up debate on central philosophical issues concerning knowledge, language, mind, and reality.

Book Being and Number in Heidegger s Thought

Download or read book Being and Number in Heidegger s Thought written by Michael Roubach and published by Continuum. This book was released on 2008-04-15 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: An important new monograph analysing the connections between mathematics and ontology in Heidegger's thought.

Book Model Theory   An Introduction

Download or read book Model Theory An Introduction written by David Marker and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures