Download or read book Nonlinear Effects in Fluids and Solids written by Michael M. Carroll and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of scientific papers is dedicated with gratitude and esteem to Ronald Rivlin and is offered as a token of appreciation by former students, col laborators, and friends. Ronald Rivlin's name is synonymous with modem developments in contin uum mechanics. His outstanding pioneering theoretical and experimental re ·search in finite elasticity is a landmark. From his work there has followed a spate of developments in which he played the leading role-the theory of fiber-rein forced materials, the developments of the theory of constitutive equations, the theory of materials with memory, the theory of the fracture of elastomers, the theory of viscoelastic fluids and solids, the development of nonlinear crystal physics, the theory of small deformations superimposed on large, and the effect of large initial strain on wave propagation. It is in Rivlin's work that universal relations were first recognized. Here also are to be found lucid explanations of physical phenomena such as the Poynting effect for elastic rods in torsion. Addi tionally, he and his co-workers predicted the presence of secondary flows for viscoelastic fluids in straight pipes of noncircular cross section under a uniform pressure head. While some others may have displayed a cavalier lack of concern for physical reality and an intoxication with mathematical idiom, Rivlin has al ways been concerned with genuine mathematical and physical content. All of his papers contain interesting and illuminating material-and may be read with profit by anyone interested in continuum mechanics.
Download or read book Introduction to Wave Propagation in Nonlinear Fluids and Solids written by D. S. Drumheller and published by Cambridge University Press. This book was released on 1998-02-13 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: Waves occur widely in nature and have innumerable commercial uses. Pressure waves are responsible for the transmission of speech, bow waves created by meteors can virtually ignite the earth's atmosphere, ultrasonic waves are used for medical imaging, and shock waves are used for the synthesis of new materials. This book provides a thorough, modern introduction to the study of linear and nonlinear waves. Beginning with fundamental concepts of motion, the book goes on to discuss linear and nonlinear mechanical waves, thermodynamics, and constitutive models. It covers gases, liquids, and solids as integral parts of the subject. Among the important areas of research and application are impact analysis, shock wave research, explosive detonation, nonlinear acoustics, and hypersonic aerodynamics. Graduate students, as well as professional engineers and applied physicists, will value this clear, comprehensive introduction to the study of wave phenomena.
Download or read book Nonlinear Effects in Fluids and Solids written by Michael M Carroll and published by . This book was released on 1996-05-31 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Non linear Modeling and Analysis of Solids and Structures written by S. Krenk and published by Cambridge University Press. This book was released on 2009-08-06 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite element analysis for non-linear solids and structure porblems.
Download or read book Wave Propagation in Electromagnetic Media written by Julian L. Davis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical tech niques, and on showing how these methods of mathematical physics can be effective in unifying the physics of wave propagation in electromagnetic media. Chapter 1 presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations, and their appli cations to electromagnetic wave propagation under a variety of conditions.
Download or read book Computational Fluid and Solid Mechanics written by K.J. Bathe and published by Elsevier. This book was released on 2001-05-21 with total page 975 pages. Available in PDF, EPUB and Kindle. Book excerpt: The MIT mission - "to bring together Industry and Academia and to nurture the next generation in computational mechanics is of great importance to reach the new level of mathematical modeling and numerical solution and to provide an exciting research environment for the next generation in computational mechanics." Mathematical modeling and numerical solution is today firmly established in science and engineering. Research conducted in almost all branches of scientific investigations and the design of systems in practically all disciplines of engineering can not be pursued effectively without, frequently, intensive analysis based on numerical computations.The world we live in has been classified by the human mind, for descriptive and analysis purposes, to consist of fluids and solids, continua and molecules; and the analyses of fluids and solids at the continuum and molecular scales have traditionally been pursued separately. Fundamentally, however, there are only molecules and particles for any material that interact on the microscopic and macroscopic scales. Therefore, to unify the analysis of physical systems and to reach a deeper understanding of the behavior of nature in scientific investigations, and of the behavior of designs in engineering endeavors, a new level of analysis is necessary. This new level of mathematical modeling and numerical solution does not merely involve the analysis of a single medium but must encompass the solution of multi-physics problems involving fluids, solids, and their interactions, involving multi-scale phenomena from the molecular to the macroscopic scales, and must include uncertainties in the given data and the solution results. Nature does not distinguish between fluids and solids and does not ever repeat itself exactly.This new level of analysis must also include, in engineering, the effective optimization of systems, and the modeling and analysis of complete life spans of engineering products, from design to fabrication, to possibly multiple repairs, to end of service.
Download or read book Buoyancy Effects in Fluids written by John Stewart Turner and published by Cambridge University Press. This book was released on 1973 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The phenomena treated in this book all depend on the action of gravity on small density differences in a non-rotating fluid. The author gives a connected account of the various motions which can be driven or influenced by buoyancy forces in a stratified fluid, including internal waves, turbulent shear flows and buoyant convection. This excellent introduction to a rapidly developing field, first published in 1973, can be used as the basis of graduate courses in university departments of meteorology, oceanography and various branches of engineering. This edition is reprinted with corrections, and extra references have been added to allow readers to bring themselves up to date on specific topics. Professor Turner is a physicist with a special interest in laboratory modelling of small-scale geophysical processes. An important feature is the superb illustration of the text with many fine photographs of laboratory experiments and natural phenomena.
Download or read book Advances in Continuum Mechanics and Thermodynamics of Material Behavior written by Donald E. Carlson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers included in this volume were presented at the Symposium on Advances in the Continuum Mechanics and Thermodynamics of Material Behavior, held as part of the 1999 Joint ASME Applied Mechanics and Materials Summer Conference at Virginia Tech on June 27-30, 1999. The Symposium was held in honor of Professor Roger L. Fosdick on his 60th birthday. The papers are written by prominent researchers in the fields of mechanics, thermodynamics, materials modeling, and applied mathematics. They address open questions and present the latest development in these and related areas. This volume is a valuable reference for researchers and graduate students in universities and research laboratories.
Download or read book High Intensity Ultrasonics written by O V Abramov and published by Routledge. This book was released on 2019-06-21 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting a comprehensive description of the theory and physics of high-intensity ultrasound, this book also deals with a wide range of problems associated with the industrial applications of ultrasound, mainly in the areas of metallurgy and mineral processing. The book is divided into three sections, and Part I introduces the reader to the theory and physics of high-intensity ultrasound. Part II considers the design of ultrasonic generators, mechanoacoustic radiators and other vibrational systems, as well as the control of acoustic parameters when vibrations are passed into a processed medium. Finally, Part III describes problems associated with various uses of high-intensity ultrasound in metallurgy. The applications of high-intensity ultrasound for metal shaping, thermal and thermochemical treatment, welding, cutting, refining, and surface hardening are also discussed here. This comprehensive monograph will provide an invaluable source of information, which has been largely unavailable in the West until now.
Download or read book Understanding Acoustics written by Steven L. Garrett and published by Springer. This book was released on 2017-02-24 with total page 913 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a unified approach to acoustics and vibration suitable for use in advanced undergraduate and first-year graduate courses on vibration and fluids. The book includes thorough treatment of vibration of harmonic oscillators, coupled oscillators, isotropic elasticity, and waves in solids including the use of resonance techniques for determination of elastic moduli. Drawing on 35 years of experience teaching introductory graduate acoustics at the Naval Postgraduate School and Penn State, the author presents a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation that can incorporate attenuation mechanisms and complex media. This view provides a consistent and reliable approach that can be extended with confidence to more complex fluids and future applications. Understanding Acoustics opens with a mathematical introduction that includes graphing and statistical uncertainty, followed by five chapters on vibration and elastic waves that provide important results and highlight modern applications while introducing analytical techniques that are revisited in the study of waves in fluids covered in Part II. A unified approach to waves in fluids (i.e., liquids and gases) is based on a mastery of the hydrodynamic equations. Part III demonstrates extensions of this view to nonlinear acoustics. Engaging and practical, this book is a must-read for graduate students in acoustics and vibration as well as active researchers interested in a novel approach to the material.
Download or read book Computational Fluid and Solid Mechanics 2003 written by K.J Bathe and published by Elsevier. This book was released on 2003-06-02 with total page 2485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing together the world's leading researchers and practitioners of computational mechanics, these new volumes meet and build on the eight key challenges for research and development in computational mechanics.Researchers have recently identified eight critical research tasks facing the field of computational mechanics. These tasks have come about because it appears possible to reach a new level of mathematical modelling and numerical solution that will lead to a much deeper understanding of nature and to great improvements in engineering design.The eight tasks are: - The automatic solution of mathematical models - Effective numerical schemes for fluid flows - The development of an effective mesh-free numerical solution method - The development of numerical procedures for multiphysics problems - The development of numerical procedures for multiscale problems - The modelling of uncertainties - The analysis of complete life cycles of systems - Education - teaching sound engineering and scientific judgement Readers of Computational Fluid and Solid Mechanics 2003 will be able to apply the combined experience of many of the world's leading researchers to their own research needs. Those in academic environments will gain a better insight into the needs and constraints of the industries they are involved with; those in industry will gain a competitive advantage by gaining insight into the cutting edge research being carried out by colleagues in academia. Features - Bridges the gap between academic researchers and practitioners in industry - Outlines the eight main challenges facing Research and Design in Computational mechanics and offers new insights into the shifting the research agenda - Provides a vision of how strong, basic and exciting education at university can be harmonized with life-long learning to obtain maximum value from the new powerful tools of analysis
Download or read book Wave Propagation in Solids and Fluids written by Julian L. Davis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this volume is to present a clear and systematic account of the mathematical methods of wave phenomena in solids, gases, and water that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical techniques, and on showing how these mathematical concepts can be effective in unifying the physics of wave propagation in a variety of physical settings: sound and shock waves in gases, water waves, and stress waves in solids. Nonlinear effects and asymptotic phenomena will be discussed. Wave propagation in continuous media (solid, liquid, or gas) has as its foundation the three basic conservation laws of physics: conservation of mass, momentum, and energy, which will be described in various sections of the book in their proper physical setting. These conservation laws are expressed either in the Lagrangian or the Eulerian representation depending on whether the boundaries are relatively fixed or moving. In any case, these laws of physics allow us to derive the "field equations" which are expressed as systems of partial differential equations. For wave propagation phenomena these equations are said to be "hyperbolic" and, in general, nonlinear in the sense of being "quasi linear" . We therefore attempt to determine the properties of a system of "quasi linear hyperbolic" partial differential equations which will allow us to calculate the displacement, velocity fields, etc.
Download or read book Non Linear Viscoelasticity of Rubber Composites and Nanocomposites written by Deepalekshmi Ponnamma and published by Springer. This book was released on 2014-11-20 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
Download or read book Wave Processes in Classical and New Solids written by Pasquale Giovine and published by BoD – Books on Demand. This book was released on 2012-10-24 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wave propagation in solids has been widely studied and principal advances in this field have been achieved not only for the improvements of calculus methods, but also for the high progresses attained in the description of new types of materials. This book presents innovative and original research studies describing some enhancement in both directions. In particular, the first section is devoted to the propagation of waves in complex materials and related dispersion relations are deeply investigated. Instead the second section is dedicated to new applications for the study of wave processes in classical solids; the emphasis is posed on various simulation availabilities in the fields of seismology, damaging, geomaterials and multi-wave propagation. The audience includes students, engineers and advanced scientists with knowledge of wave propagation in solids.
Download or read book Nonlinear Elasticity and Hysteresis written by Alicia H. Kim and published by John Wiley & Sons. This book was released on 2015-03-09 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides the reader with the knowledge, tools, and methods to understand the phenomenon of hysteresis in porous materials. As many challenges have been met only recently, the book summarizes the research results usually found only scattered in the literature, connecting knowledge from traditionally separated research fields to provide a better understanding of the physical phenomena of coupled elastic-fluid systems. The result is an invaluable self-contained reference book for materials scientists, civil, mechanical and construction engineers concerned with development and maintenance of structures made of porous materials.
Download or read book Hydraulic Research in the United States and Canada written by United States. National Bureau of Standards and published by . This book was released on 1968 with total page 1046 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Energy Research Abstracts written by and published by . This book was released on 1995 with total page 782 pages. Available in PDF, EPUB and Kindle. Book excerpt: