EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Noise Benefits of Increased Fan Bypass Nozzle Area

Download or read book Noise Benefits of Increased Fan Bypass Nozzle Area written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-21 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: An advanced model turbofan (typical of current engine technology) was tested in the NASA Glenn 9 by 15 Foot Low Speed Wind Tunnel (9-by 15-Foot LSWT) to explore far field acoustic effects of increased bypass nozzle area. This fan stage test was part of the NASA Glenn Fan Broadband Source Diagnostic Test, second entry (SDT2) which acquired aeroacoustic results over a range of test conditions. The baseline nozzle was sized to produce maximum stage performance for the engine at a high altitude, cruise point condition. However, the wind tunnel testing is conducted near sea level conditions. Therefore, in order to simulate and obtain performance at other aircraft operating conditions, two additional nozzles were designed and tested-one with a +5 percent increase in weight flow (+5.4 percent increase in nozzle area compared with the baseline nozzle), sized to simulate the performance at the stage design point conditions, and the other with a +7.5 percent increase in weight flow (+10.9 percent increase in nozzle area), sized for maximum weight flow with a fixed nozzle at sea level conditions. Measured acoustic benefits with increased nozzle area were very encouraging, showing overall sound power level (OAPWL) reductions of 2 or more dB while the stage thrust actually increased by several percentage points except fro the most open nozzle at takeoff rotor speed where stage performance decreased. These noise reduction benefits were seen to primarily affect broadband noise, and were evident throughout the range of measured sideline angles. Woodward, Richard P. and Hughes, Christopher E. Glenn Research Center NASA/TM-2004-213396, AIAA Paper 2005-1201, E-14899

Book Aeroacoustic Analysis of Fan Noise Reduction with Increased Bypass Nozzle Area

Download or read book Aeroacoustic Analysis of Fan Noise Reduction with Increased Bypass Nozzle Area written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-05-29 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: An advanced model turbofan was tested in the NASA Glenn 9-by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) to explore far field acoustic effects of increased bypass nozzle area. This fan stage test was part of the NASA Glenn Fan Broadband Source Diagnostic Test, second entry (SDT2) which acquired aeroacoustic results over a range of test conditions. The baseline nozzle was sized to produce maximum stage performance at cruise condition. However, the wind tunnel testing is conducted near sea level condition. Therefore, in order to simulate and obtain performance at other operating conditions, two additional nozzles were designed and tested one with +5 percent increase in weight flow (+5.4 percent increase in nozzle area compared with the baseline nozzle), sized to simulate the performance at the stage design point (takeoff) condition, and the other with a +7.5 percent increase in weight flow (+10.9 percent increase in nozzle area) sized for maximum weight flow with a fixed nozzle at sea level condition. Measured acoustic benefits with increased nozzle area were very encouraging, showing overall sound power level (OAPWL) reductions of 2 or more dB while the stage thrust actually increased by 2 to 3 percent except for the most open nozzle at takeoff rotor speed where stage performance decreased. Effective perceived noise levels for a 1500 ft engine flyover and 3.35 scale factor showed a similar noise reduction of 2 or more EPNdB. Noise reductions, principally in the level of broadband noise, were observed everywhere in the far field. Laser Doppler Velocimetry measurements taken downstream of the rotor showed that the total turbulent velocity decreased with increasing nozzle flow, which may explain the reduced rotor broadband noise levels.Woodward, Richard P. and Hughes, Christopher E. and Podboy, Gary G.Glenn Research CenterAEROACOUSTICS; FAN BLADES; LOW SPEED WIND TUNNELS; NOZZLE FLOW; WIND TUNNEL TESTS; NOISE REDUCTION; AIRCRAFT ENGINES; BYPASSES; NOZZLE DESIGN; EFFECTIVE

Book The Effect of Bypass Nozzle Exit Area on Fan Aerodynamic Performance and Noise in a Model Turbofan Simulator

Download or read book The Effect of Bypass Nozzle Exit Area on Fan Aerodynamic Performance and Noise in a Model Turbofan Simulator written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-05-22 with total page 40 pages. Available in PDF, EPUB and Kindle. Book excerpt: The design of effective new technologies to reduce aircraft propulsion noise is dependent on identifying and understanding the noise sources and noise generation mechanisms in the modern turbofan engine, as well as determining their contribution to the overall aircraft noise signature. Therefore, a comprehensive aeroacoustic wind tunnel test program was conducted called the Fan Broadband Source Diagnostic Test as part of the NASA Quiet Aircraft Technology program. The test was performed in the anechoic NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel using a 1/5 scale model turbofan simulator which represented a current generation, medium pressure ratio, high bypass turbofan aircraft engine. The investigation focused on simulating in model scale only the bypass section of the turbofan engine. The test objectives were to: identify the noise sources within the model and determine their noise level; investigate several component design technologies by determining their impact on the aerodynamic and acoustic performance of the fan stage; and conduct detailed flow diagnostics within the fan flow field to characterize the physics of the noise generation mechanisms in a turbofan model. This report discusses results obtained for one aspect of the Source Diagnostic Test that investigated the effect of the bypass or fan nozzle exit area on the bypass stage aerodynamic performance, specifically the fan and outlet guide vanes or stators, as well as the farfield acoustic noise level. The aerodynamic performance, farfield acoustics, and Laser Doppler Velocimeter flow diagnostic results are presented for the fan and four different fixed-area bypass nozzle configurations. The nozzles simulated fixed engine operating lines and encompassed the fan stage operating envelope from near stall to cruise. One nozzle was selected as a baseline reference, representing the nozzle area which would achieve the design point operating conditions and fan stage performance. The total area change from the smallest to the largest nozzle was 12.9 percent of the baseline nozzle area. The results will show that there are significant changes in aerodynamic performance and farfield acoustics as the fan nozzle area is increased. The weight flow through the fan model increased between 7 and 9 percent, the fan and stage pressure dropped between 8 and 10 percent, and the adiabatic efficiency increased between 2 and 3 percent--the magnitude of the change dependent on the fan speed. Results from force balance measurements of fan and outlet guide vane thrust will show that as the nozzle exit area is increased the combined thrust of the fan and outlet guide vanes together also increases, between 2 and 3.5 percent, mainly due to the increase in lift from the outlet guide vanes. In terms of farfield acoustics, the overall sound power level produced by the fan stage dropped nearly linearly between 1 dB at takeoff condition and 3.5 dB at approach condition, mainly due to a decrease in the broadband n

Book Research   Technology 2004

    Book Details:
  • Author :
  • Publisher : DIANE Publishing
  • Release :
  • ISBN : 1428918183
  • Pages : 226 pages

Download or read book Research Technology 2004 written by and published by DIANE Publishing. This book was released on with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 43rd AIAA Aerospace Sciences Meeting   Exhibit

Download or read book 43rd AIAA Aerospace Sciences Meeting Exhibit written by and published by . This book was released on 2005 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Acoustic Benefits of Stator Sweep and Lean for a High Tip Speed Fan

Download or read book Acoustic Benefits of Stator Sweep and Lean for a High Tip Speed Fan written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-19 with total page 40 pages. Available in PDF, EPUB and Kindle. Book excerpt: A model high-speed fan stage was acoustically tested in the NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel at takeoff/approach flight conditions. The fan was designed for a corrected rotor tip speed of 442 m/s (1450 ft/s), and had a powered core, or booster stage, giving the model a nominal bypass ratio of 5. The model also had a simulated engine pylon and nozzle bifurcation contained within the bypass duct. The fan was tested with three stator sets to evaluate acoustic benefits associated with a swept and leaned stator and with a swept integral vane/frame stator which incorporated some of the swept and leaned features as well as eliminated some of the downstream support structure. The baseline fan with the wide chord rotor and baseline stator approximated a current GEAE CF6 engine. A flyover effective perceived noise level (EPNL) code was used to generate relative EPNL values for the various configurations. Flyover effective perceived noise levels (EPNL) were computed from the model data to help project noise benefits. A tone removal study was also performed. The swept and leaned stator showed a 3 EPNdB reduction at lower fan speeds relative to the baseline stator; while the swept integral vane/frame stator showed lowest noise levels at intermediate fan speeds. Removal of the bypass blade passage frequency rotor tone (BPF) showed a 4 EPNdB reduction for the baseline and swept and leaned stators, and a 6 EPNdB reduction for the swept integral vane/ frame stator. Therefore, selective tone removal techniques such as active noise control and/or tuned liner could be particularly effective in reducing noise levels for certain fan speeds. Woodward, Richard P. and Gazzaniga, John A. and Bartos, Linda J. and Hughes, Christopher E. Glenn Research Center NASA/TM-2002-211345, E-13143, NAS 1.15:211345, AIAA Paper 2002-1034

Book ASME 70 WA GT 14

Download or read book ASME 70 WA GT 14 written by A. O. Kohn and published by . This book was released on 1970 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Investigation of Innovative Technologies for Reduction of Jet Noise in Medium and High Bypass Turbofan Engines

Download or read book An Investigation of Innovative Technologies for Reduction of Jet Noise in Medium and High Bypass Turbofan Engines written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This research project has developed a new, large-scale, nozzle acoustic test rig capable of simulating the exhaust flows of separate flow exhaust systems in medium and high bypass turbofan engines. This rig has subsequently been used to advance the understanding of two state-of-the-art jet noise reduction technologies. The first technology investigated is an emerging jet noise reduction technology known as chevron nozzles. The fundamental goal of this investigation was to advance the understanding of the fundamental physical mechanisms responsible for the acoustic benefits provided by these nozzles. Additionally, this study sought to establish the relationship between these physical mechanisms and the chevron geometric parameters. A comprehensive set of data was collected, including far-field and near-field acoustic data as well as flow field measurements. In addition to illustrating the ability of the chevron nozzles to provide acoustic benefits in important aircraft certification metrics such as effective perceived noise level (EPNL), this investigation successfully identified two of the fundamental physical mechanisms responsible for this reduction. The flow field measurements showed the chevron to redistribute energy between the core and fan streams to effectively reduce low frequency noise by reducing the length of the jet potential core. However, this redistribution of energy produced increases in turbulent kinetic energy of up to 45% leading to a degradation of the chevron benefit at higher frequencies ... plane to reduce jet noise. The principal advantage of such an approach is that it is an active technology that can be activated as needed and, as such, may be more acceptable in aircraft engines from a performance standpoint than passive technologies. This study successfully demonstrated the feasibility of this technology by showing that effective jet noise reduction can be provided in a broad range of flow conditions using less than 1% of the mean jet mass flow. An investigation of injection geometric parameters identified the injection pitch angle as the most influential parameter with respect to jet noise reduction. Furthermore, an investigation of scaling effects showed a momentum ratio of approximately 1.5% to provide reductions in sound pressure level between 1 and 2 dB across a wide range of frequencies for a wide range of flow conditions and scales including both single stream and dual stream flows. PIV flow field measurements identified the fundamental physical mechanism of the noise reduction to be a near uniform reduction in shear layer turbulence.

Book Fan Noise Reduction  An Overview

Download or read book Fan Noise Reduction An Overview written by Edmane Envia and published by . This book was released on 2001 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Technology for a Quieter America

Download or read book Technology for a Quieter America written by National Academy of Engineering and published by National Academies Press. This book was released on 2010-10-30 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exposure to noise at home, at work, while traveling, and during leisure activities is a fact of life for all Americans. At times noise can be loud enough to damage hearing, and at lower levels it can disrupt normal living, affect sleep patterns, affect our ability to concentrate at work, interfere with outdoor recreational activities, and, in some cases, interfere with communications and even cause accidents. Clearly, exposure to excessive noise can affect our quality of life. As the population of the United States and, indeed, the world increases and developing countries become more industrialized, problems of noise are likely to become more pervasive and lower the quality of life for everyone. Efforts to manage noise exposures, to design quieter buildings, products, equipment, and transportation vehicles, and to provide a regulatory environment that facilitates adequate, cost-effective, sustainable noise controls require our immediate attention. Technology for a Quieter America looks at the most commonly identified sources of noise, how they are characterized, and efforts that have been made to reduce noise emissions and experiences. The book also reviews the standards and regulations that govern noise levels and the federal, state, and local agencies that regulate noise for the benefit, safety, and wellness of society at large. In addition, it presents the cost-benefit trade-offs between efforts to mitigate noise and the improvements they achieve, information sources available to the public on the dimensions of noise problems and their mitigation, and the need to educate professionals who can deal with these issues. Noise emissions are an issue in industry, in communities, in buildings, and during leisure activities. As such, Technology for a Quieter America will appeal to a wide range of stakeholders: the engineering community; the public; government at the federal, state, and local levels; private industry; labor unions; and nonprofit organizations. Implementation of the recommendations in Technology for a Quieter America will result in reduction of the noise levels to which Americans are exposed and will improve the ability of American industry to compete in world markets paying increasing attention to the noise emissions of products.

Book Advanced Subsonic Technology  Ast  Separate Flow High Bypass Ratio Nozzle Noise Reduction Program Test Report

Download or read book Advanced Subsonic Technology Ast Separate Flow High Bypass Ratio Nozzle Noise Reduction Program Test Report written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-08-20 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: NASA s model-scale nozzle noise tests show that it is possible to achieve a 3 EPNdB jet noise reduction with inwardfacing chevrons and flipper-tabs installed on the primary nozzle and fan nozzle chevrons. These chevrons and tabs are simple devices and are easy to be incorporated into existing short duct separate-flow nonmixed nozzle exhaust systems. However, these devices are expected to cause some small amount of thrust loss relative to the axisymmetric baseline nozzle system. Thus, it is important to have these devices further tested in a calibrated nozzle performance test facility to quantify the thrust performances of these devices. The choice of chevrons or tabs for jet noise suppression would most likely be based on the results of thrust loss performance tests to be conducted by Aero System Engineering (ASE) Inc. It is anticipated that the most promising concepts identified from this program will be validated in full scale engine tests at both Pratt & Whitney and Allied-Signal, under funding from NASA s Engine Validation of Noise Reduction Concepts (EVNRC) programs. This will bring the technology readiness level to the point where the jet noise suppression concepts could be incorporated with high confidence into either new or existing turbofan engines having short-duct, separate-flow nacelles. Low, John K. C. and Schweiger, Paul S. and Premo, John W. and Barber, Thomas J. and Saiyed, Naseem (Technical Monitor) Glenn Research Center NAS3-27727; WU 522-81-11...

Book NASA s First A

Download or read book NASA s First A written by Robert G. Ferguson and published by . This book was released on 2013 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Smart Structures Theory

    Book Details:
  • Author : Inderjit Chopra
  • Publisher : Cambridge University Press
  • Release : 2014
  • ISBN : 052186657X
  • Pages : 925 pages

Download or read book Smart Structures Theory written by Inderjit Chopra and published by Cambridge University Press. This book was released on 2014 with total page 925 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on smart materials and structures, which are also referred to as intelligent, adaptive, active, sensory, and metamorphic. The ultimate goal is to develop biologically inspired multifunctional materials with the capability to adapt their structural characteristics, monitor their health condition, perform self-diagnosis and self-repair, morph their shape, and undergo significant controlled motion.

Book Aeronautical Research and Development

    Book Details:
  • Author : United States. Congress. House. Committee on Science and Astronautics. Subcommittee on Aeronautics and Space Technology
  • Publisher :
  • Release : 1972
  • ISBN :
  • Pages : 968 pages

Download or read book Aeronautical Research and Development written by United States. Congress. House. Committee on Science and Astronautics. Subcommittee on Aeronautics and Space Technology and published by . This book was released on 1972 with total page 968 pages. Available in PDF, EPUB and Kindle. Book excerpt: